Efficient Sampling for Computer Vision Inspection in Automated Quality Control
自动化质量控制中计算机视觉检测的高效采样
基本信息
- 批准号:8511965
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1985
- 资助国家:美国
- 起止时间:1985-09-01 至 1987-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine vision inspection systems are on the threshold of becoming commercial. Their great advantage is that they can be used to check the geometric quality of parts that are too complex for human inspectors. Their great disadvantage is that they are too slow, partly because they process vast amounts of data and computation times, therefore, are too long. This work will result in ways to get around this problem, using statistical sampling to reduce, rationally, the amount of data required to assure part quality. The scope of the work is restricted to the basic measurements of straightness and roundness. The approach is to develop a mathematical relationship between sample size and inspection accuracy. Next, a relationship will be established between sample size and processing time for selected machine vision systems. Then criteria will be established for selection of a proper sampling method. These will be put into forms easily referenced by quality assurance practitioners. Sample size will be stated in terms of number of scans across the test part, and number of points within each scan. Inspection accuracy will be expressed in terms of the size of the confidence interval (error) of the measured quality characteristics.
机器视觉检测系统即将成为 商业广告。 它们的最大优点是可以用来检查 对于人类来说过于复杂的零件的几何质量 督察 它们的最大缺点是速度太慢, 因为它们处理大量的数据和计算时间, 因此,太长了。 这项工作将使人们能够 这个问题,使用统计抽样,以减少,合理, 确保零件质量所需的数据量。 的工作范围 仅限于直线度和圆度的基本测量。 该方法是建立样本之间的数学关系, 尺寸和检查精度。 接下来,将建立关系 样本量和所选机器视觉的处理时间之间的关系 系统. 然后将建立标准,以选择适当的 抽样方法 这些将被放入容易参考的表格中, 质量保证从业人员。 样本量将以术语表示 测试部件上的扫描次数, 每次扫描。 检验精度将以尺寸表示 测量质量的置信区间(误差) 特色
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
C. Alec Chang其他文献
C. Alec Chang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('C. Alec Chang', 18)}}的其他基金
Feature Based Associative Memory for Design Retrieval System
用于设计检索系统的基于特征的联想存储器
- 批准号:
9900224 - 财政年份:1999
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
相似海外基金
Computer Intensive Methods in Sampling and in Adaptive Contexts
采样和自适应环境中的计算机密集型方法
- 批准号:
RGPIN-2016-05686 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Catalyst Project: Computer algorithms and simulations for CT image reconstruction and segmentation utilizing optimal sampling lattices and efficient domains
Catalyst 项目:利用最佳采样点阵和有效域进行 CT 图像重建和分割的计算机算法和模拟
- 批准号:
2000158 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Understanding the Development of Interest in Computer Science: An Experience Sampling Approach
了解计算机科学兴趣的发展:经验抽样方法
- 批准号:
1937700 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Computer Intensive Methods in Sampling and in Adaptive Contexts
采样和自适应环境中的计算机密集型方法
- 批准号:
RGPIN-2016-05686 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Computer Intensive Methods in Sampling and in Adaptive Contexts
采样和自适应环境中的计算机密集型方法
- 批准号:
RGPIN-2016-05686 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Computer Intensive Methods in Sampling and in Adaptive Contexts
采样和自适应环境中的计算机密集型方法
- 批准号:
RGPIN-2016-05686 - 财政年份:2017
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Computer Intensive Methods in Sampling and in Adaptive Contexts
采样和自适应环境中的计算机密集型方法
- 批准号:
RGPIN-2016-05686 - 财政年份:2016
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
CHS: Small: Collaborative Research: Sampling and Reconstruction for Computer Graphics Rendering and Imaging
CHS:小型:协作研究:计算机图形渲染和成像的采样和重建
- 批准号:
1420122 - 财政年份:2014
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
The Rise of the Boson-Sampling Quantum Computer and The Renaissance of the Linear Optical Quantum Interferometer
玻色子采样量子计算机的兴起和线性光学量子干涉仪的复兴
- 批准号:
1403105 - 财政年份:2014
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
CHS: Small: Collaborative Research: Sampling and Reconstruction for Computer Graphics Rendering and Imaging
CHS:小型:协作研究:计算机图形渲染和成像的采样和重建
- 批准号:
1420146 - 财政年份:2014
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant