Nonlinear and Chaotic Cross Waves: Theory and Experiment
非线性和混沌交叉波:理论与实验
基本信息
- 批准号:8611379
- 负责人:
- 金额:$ 8.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1986
- 资助国家:美国
- 起止时间:1986-11-01 至 1989-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Further research is conducted on cross waves and edge waves. The research is both theoretical and experimental. These waves form crests in a direction perpendicular to the obstacle which generates them, and they form at sufficiently large amplitudes and wave steepness. The study will focus on instability modes, the occurrence of chaotic regimes, and progressing solitary waves (solitons). Means for suppressing cross waves on wave makers will be further explored.
对横波和边波进行了进一步的研究。这项研究既是理论研究,也是实验研究。这些波在垂直于产生它们的障碍物的方向上形成波峰,并且它们以足够大的幅度和波的陡度形成。这项研究将集中在不稳定模式、混沌区域的出现和前进的孤立波(孤子)。将进一步探索抑制造波机上交叉波的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seth Lichter其他文献
Effect of Molecular-Scale Features on the Polymer Coil Size of Model Viscosity Index Improvers
- DOI:
10.1007/s11249-016-0672-0 - 发表时间:
2016-03-31 - 期刊:
- 影响因子:3.300
- 作者:
Uma Shantini Ramasamy;Seth Lichter;Ashlie Martini - 通讯作者:
Ashlie Martini
Seth Lichter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Seth Lichter', 18)}}的其他基金
Interaction of a Boundary Layer with a Point Vortex
边界层与点涡的相互作用
- 批准号:
9729190 - 财政年份:1998
- 资助金额:
$ 8.78万 - 项目类别:
Continuing Grant
Travel Funds for Attendees of the G.I. Taylor Symposium, June 29-July 2, 1997, Evanston, Illinois
G.I. 参加者的旅行基金
- 批准号:
9705684 - 财政年份:1997
- 资助金额:
$ 8.78万 - 项目类别:
Standard Grant
Evolution and Viscous Decay of Dipolar Vortex Couples in Two Dimensional Fluid Mechanics
二维流体力学中偶极涡对的演化和粘性衰变
- 批准号:
9206828 - 财政年份:1992
- 资助金额:
$ 8.78万 - 项目类别:
Continuing Grant
Research Initiation: An Experimental Program on Nonlinear Cross Waves
研究启动:非线性交叉波实验项目
- 批准号:
8404821 - 财政年份:1984
- 资助金额:
$ 8.78万 - 项目类别:
Standard Grant
相似海外基金
Development of weather-dependent adaptive data assimilation method for all-sky satellite radiances for the better understanding of chaotic nature of the atmosphere
开发全天卫星辐射的依赖天气的自适应数据同化方法,以更好地了解大气的混沌性质
- 批准号:
23K13167 - 财政年份:2023
- 资助金额:
$ 8.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analysis of Dynamical Structure in the Chaotic Region and Application to Trajectory Design and Optimization
混沌区域动力结构分析及其在轨迹设计与优化中的应用
- 批准号:
23KJ1692 - 财政年份:2023
- 资助金额:
$ 8.78万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Stable structures and chaotic dynamics in fluid flows
流体流动中的稳定结构和混沌动力学
- 批准号:
EP/X020886/1 - 财政年份:2023
- 资助金额:
$ 8.78万 - 项目类别:
Research Grant
CAREER: Chaotic Dynamics of Systems with Noise
职业:噪声系统的混沌动力学
- 批准号:
2237360 - 财政年份:2023
- 资助金额:
$ 8.78万 - 项目类别:
Continuing Grant
CAREER: Untangling Chaotic Electromagnetic Transient Phenomena in Power Systems Mixed with Volatile Inverter-Based Renewable Energy Resources
职业:解开与不稳定的基于逆变器的可再生能源混合的电力系统中的混沌电磁瞬态现象
- 批准号:
2237527 - 财政年份:2023
- 资助金额:
$ 8.78万 - 项目类别:
Continuing Grant
Swimming the Chaotic Seas: Invariant Manifolds, Tori, and the Transport of Swimmers in Fluid Flows
在混乱的海洋中畅游:不变流形、托里和流体流动中游泳者的传输
- 批准号:
2314417 - 财政年份:2023
- 资助金额:
$ 8.78万 - 项目类别:
Standard Grant
What predictions can I trust? Stability of chaotic random dynamical systems
我可以相信哪些预测?
- 批准号:
DP220102216 - 财政年份:2022
- 资助金额:
$ 8.78万 - 项目类别:
Discovery Projects
ergotic transition in finitely bounded small number quantum chaotic systems and its semiclassics
有限有界小数量子混沌系统及其半经典中的遍历转变
- 批准号:
22K03476 - 财政年份:2022
- 资助金额:
$ 8.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
How do Arctic microalgae thrive in the chaotic light field of in-ice and under-ice marine habitats?
北极微藻如何在冰内和冰下海洋栖息地的混乱光场中繁衍生息?
- 批准号:
RGPIN-2020-06384 - 财政年份:2022
- 资助金额:
$ 8.78万 - 项目类别:
Discovery Grants Program - Individual
The Geometry and Building Blocks of Chaotic Fluid Convection
混沌流体对流的几何结构和构建模块
- 批准号:
2151389 - 财政年份:2022
- 资助金额:
$ 8.78万 - 项目类别:
Standard Grant