The Geometry and Building Blocks of Chaotic Fluid Convection
混沌流体对流的几何结构和构建模块
基本信息
- 批准号:2151389
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Large systems containing fluids that are driven by an external source are at the core of many important challenges facing science and engineering today. Examples include weather prediction, the dynamics of the oceans, and turbulent flow in a pipe. The goal of this study is to build the insights that will be needed to describe, predict, and control systems such as these. The research will study these questions by focusing on the complex dynamics of a shallow layer of fluid that is heated from below. Dynamical systems theory will be used to provide a view into these dynamics by exploiting recent advances in algorithms and the availability of large supercomputing resources. This project will improve our understanding of the basic building blocks that compose chaotic fluid dynamics. This project will support undergraduate and graduate students, and the project will develop a new course for undergraduate engineering students on the exciting advances of dynamical systems and large-scale computations for important problems involving the dynamics of fluids. This study explores the basic nature of chaotic fluid dynamics using dynamical systems theory. The project focusses on the chaotic convection of a shallow layer of fluid that is heated from below in a gravitational field. This project builds an understanding of the fluid dynamics as a trajectory through a high-dimensional state space using the ideas of exact coherent structures and covariant Lyapunov vectors. Exact coherent structures are unstable and invariant solutions that provide a rigid skeleton in state space upon which the trajectory must navigate. The covariant Lyapunov vectors describe the growth or decay of small perturbations to the dynamics and quantify the unstable and stable manifolds of the dynamics. These quantities will be used to build an understanding of the geometry of state space and to identify the building blocks of the fluid motion. An important outcome will be the development of a statistical description of the dynamics based upon the gained insights. This project will provide important guidance for the development of theoretical ideas to describe a wide range of fluid systems, as well as other important large dissipative systems that are of societal interest.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
包含由外部来源驱动的流体的大型系统是当今科学和工程面临的许多重要挑战的核心。例如天气预报、海洋动态和管道中的湍流。这项研究的目标是建立描述、预测和控制这样的系统所需的洞察力。这项研究将通过关注从下面加热的浅层流体的复杂动力学来研究这些问题。动力系统理论将被用来通过利用算法的最新进展和大型超级计算资源的可用性来提供对这些动态的看法。这个项目将提高我们对构成混沌流体动力学的基本构件的理解。该项目将支持本科生和研究生,该项目将为本科工程学学生开发一门新课程,内容涉及动力系统的令人兴奋的进步和涉及流体动力学的重要问题的大规模计算。本研究运用动力系统理论探讨了混沌流体动力学的基本性质。该项目专注于浅层流体在引力场中从下加热的混沌对流。这个项目利用精确相干结构和协变Lyapunov矢量的思想,将流体动力学理解为通过高维状态空间的轨迹。精确相干结构是不稳定和不变的解,它在状态空间中提供了一个刚性骨架,轨迹必须在该骨架上导航。协变Lyapunov向量描述了动力学小扰动的增长或衰减,并量化了动力学的不稳定和稳定流形。这些量将被用来建立对状态空间几何的理解,并用于识别流体运动的构件。一个重要的成果将是根据所获得的洞察力制定动态的统计描述。该项目将为理论思想的发展提供重要的指导,以描述广泛的流体系统,以及其他具有社会意义的重要的大耗散系统。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Paul其他文献
Spatiotemporal dynamics of the covariant Lyapunov vectors of chaotic convection.
混沌对流协变李雅普诺夫向量的时空动力学。
- DOI:
10.1103/physreve.97.032216 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
M. Xu;Mark Paul - 通讯作者:
Mark Paul
Propagating fronts in fluids with solutal feedback.
通过溶液反馈在流体中传播前沿。
- DOI:
10.1103/physreve.101.032214 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Saikat Mukherjee;Mark Paul - 通讯作者:
Mark Paul
Global Crustal Thickness Revealed by Surface Waves Orbiting Mars
绕火星运行的表面波揭示了全球地壳厚度
- DOI:
10.1029/2023gl103482 - 发表时间:
2023 - 期刊:
- 影响因子:5.2
- 作者:
Doyeon Kim;C. Durán;Domenico Giardini;A. Plesa;C. Simon;Stähler;Christian Boehm;V. Lekić;S. McLennan;S. Ceylan;John;Clinton;P. M. Davis;Amir Khan;B. Knapmeyer‐Endrun;Mark Paul;Panning;M. Wieczorek;Philippe Lognonné - 通讯作者:
Philippe Lognonné
Philip Ackerman-Leist: Rebuilding the foodshed: how to create local, sustainable, and secure food systems
- DOI:
10.1007/s10460-016-9728-x - 发表时间:
2016-10-05 - 期刊:
- 影响因子:3.600
- 作者:
Mark Paul - 通讯作者:
Mark Paul
Mark Paul的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Paul', 18)}}的其他基金
The Complex Dynamics of Large Systems with Long-Range Interactions: New Insights from Covariant Lyapunov Vectors
具有长程相互作用的大型系统的复杂动力学:来自协变 Lyapunov 向量的新见解
- 批准号:
2138055 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: The Nonlinear Stochastic Dynamics of Micro and Nanomechanical Systems
合作研究:微纳机械系统的非线性随机动力学
- 批准号:
2001559 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Revealing the Geometry of Spatio-temporal Chaos with Computational Topology: Theory, Numerics and Experiments
合作研究:用计算拓扑揭示时空混沌的几何:理论、数值和实验
- 批准号:
1622299 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CDI-TYPE II--COLLABORATIVE RESEARCH: Using Algebraic Topology to Connect Models with Measurements in Complex Nonequilibrium Systems
CDI-TYPE II——协作研究:使用代数拓扑将模型与复杂非平衡系统中的测量联系起来
- 批准号:
1125234 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Spatiotemporal Chaos in Fluid Convection: New Physical Insights from Numerics
职业:流体对流中的时空混沌:来自数值的新物理见解
- 批准号:
0747727 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Symmetry-Breaking Bifurcations in an Oscillating Fluid Layer
合作研究:振荡流体层中的对称破缺分岔
- 批准号:
0604376 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
基于支链淀粉building blocks构建优质BE突变酶定向修饰淀粉调控机制的研究
- 批准号:31771933
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
FABB-HVDC (Future Aerospace power conversion Building Blocks for High Voltage DC electrical power systems)
FABB-HVDC(高压直流电力系统的未来航空航天电力转换构建模块)
- 批准号:
10079892 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Legacy Department of Trade & Industry
Assembling the building blocks in the blueprint of the embryonic head
在胚胎头部的蓝图中组装积木
- 批准号:
DP240101571 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Discovery Projects
Digital building blocks of elementary school foreign language reading motivation
小学外语阅读动机的数字积木
- 批准号:
23K25344 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAS: Degradable Polyacrylates From Natural and Scalable Building Blocks
CAS:来自天然和可扩展构件的可降解聚丙烯酸酯
- 批准号:
2348679 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Stereoselective Reactions of Aromatic Building Blocks
芳香族嵌段的立体选择性反应
- 批准号:
2246693 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Catalytic Hydrofluorination for the Assembly of Chiral Fluorinated Building Blocks
用于组装手性氟化砌块的催化氢氟化反应
- 批准号:
EP/X013081/1 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Research Grant
LEAPS-MPS: Aryl Tosylates as Building Blocks for the Synthesis of Oxygen-containing Heterocycles
LEAPS-MPS:芳基甲苯磺酸盐作为合成含氧杂环的结构单元
- 批准号:
2316992 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
HNDS-I: Critical Data Building Blocks for Socioeconomic Research - Administrative Boundaries
HNDS-I:社会经济研究的关键数据构建模块 - 行政边界
- 批准号:
2317591 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Efficient and Mild Synthesis of Arynes from Readily Available Building Blocks
从现成的结构单元高效温和地合成芳炔
- 批准号:
2247802 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Making the Building Blocks of Early Math Scalable, Accessible, and Viable for All Young Children and Their Teachers
使早期数学的基础对于所有幼儿及其老师来说都是可扩展的、可访问的和可行的
- 批准号:
2300606 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant