Macro Models Based on Aggregation of Micro Behavior Using Models of Changes in the Distribution of Individuals

基于个体分布变化模型的微观行为聚合的宏观模型

基本信息

  • 批准号:
    8712787
  • 负责人:
  • 金额:
    $ 7.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1987
  • 资助国家:
    美国
  • 起止时间:
    1987-07-15 至 1990-12-31
  • 项目状态:
    已结题

项目摘要

A great deal of applied econometric analysis uses aggregated data (from Census, the Bureau of Labor Statistics and so on) to test and apply theories about the behavior of individuals in the economy. For instance, studies estimating systems of demand equations for many types of consumer goods are based on the microeconomic theory describing individual optimizing behavior, but use consumer expenditure data of the entire country, thereby implicitly treating the aggregated data as if they were generated by a single person. In a similar circumstance the output of a firm is theoretically derived based on the principle of profit maximization. Estimation of production functions of firms, however, is often done using data based on an entire industry or country. The assumption of a single consumer or firm being a representative of the entire economy is a convenient one, in that it allows application and testing of microeconomic theories with available aggregate data, and it avoids intractable problems of aggregation and collective choice. Unfortunately, there is no reason deriving from economic theory to assume that national aggregate data, which is the result of adding the economic activities of millions of diverse individuals, will resemble the economic activity of a single firm or consumer. The researcher must thus assume some general parameters for the aggregated data in order to uncover the underlying optimizing behavior. Past theoretical work has shown that very little structure need be assumed on the aggregated data to infer the existence of aggregate demand or supply functions, and that those restrictions need be placed only on the statistical distribution of the aggregate data. Thus one can validly restrict the distribution of consumer expenditures to remain unchanged through time or to change in general specified ways. Such distributional assumptions can also be applied to production. Professor Lewbel derives aggregate demand equations for the economy by considering the restrictions on the changes over time in the distribution of total expenditures in the population, and combining them with specific individual demand behavior. These aggregate demand equations satisfy all the conditions of utility maximization on which individual demand equations are based. Technically, he constructs nonlinear models of macroeconomic data based on explicit models of both heterogeneous microeconomic behavior and of the evolution over time of the distribution of individual agents in the economy. This allows for the construction of models of shifts in the distributions through time that are compatible with aggregation theory. Professor Lewbel tests the theoretical validity of aggregate models by estimation using cross sectional or panel data, and by studying the distribution data in several time periods. These methods are applied to various national data sets like the National Income and Product Accounts, the Consumer Expenditure Survey, and the U. S. Current Population Reports.
大量的应用计量经济学分析使用汇总数据 (from人口普查局、劳工统计局等)进行测试, 应用经济中个人行为的理论。 为 例如,研究了许多需求方程的估计系统, 消费品的种类是以微观经济理论为基础的 描述个人优化行为,但使用消费者 整个国家的支出数据,从而隐含地处理 聚合的数据就像是由一个人生成的一样。 在 在类似的情况下,从理论上推导出企业的产量, 基于利润最大化的原则。 估计 然而,企业的生产函数通常是使用基于数据的 整个行业或国家。 假设单个消费者或公司代表 整个经济是一个方便的经济,因为它允许应用 以及用可用的综合数据检验微观经济理论, 它避免了聚集和集体的棘手问题, 选择 不幸的是,没有理由从经济上 理论假设,国家汇总数据,这是结果, 加上数百万不同个体的经济活动, 将类似于单个公司或消费者的经济活动。 的 因此,研究人员必须假设一些一般参数的聚合 数据,以揭示潜在的优化行为。 过去 理论工作已经表明,几乎不需要假定结构 根据汇总数据推断总需求的存在,或 供应功能,这些限制只需要放在 汇总数据的统计分布。 因此, 有效地限制消费支出的分配, 不随时间改变或以特定的方式改变。 等 分配假设也可以应用于生产。 教授Lewbel推导出总需求方程的经济, 考虑到对《公约》随时间变化的限制, 总支出在人口中的分配, 具体的个人需求行为。 这些总需求 方程满足效用最大化的所有条件, 个人需求方程的基础。 技术上来说,他构建了 宏观经济数据的非线性模型, 异质微观经济行为和演变 经济中个体行为者的分配时间。 这 允许构建分布中的偏移模型 与聚集理论相一致。 Lewbel教授通过以下方式测试了聚合模型的理论有效性: 估计使用横截面或面板数据,并通过研究 在几个时间段内的分布数据。 这些方法应用于 各种国家数据集,如国民收入和生产总值, 消费者支出调查和美国消费者支出调查。S.电流 人口报告。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arthur Lewbel其他文献

Collective Behavior with Information Asymmetry
信息不对称的集体行为
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhi Cao;Arthur Lewbel;Wenchao Li;Junjian Yi
  • 通讯作者:
    Junjian Yi
Exact Aggregation and a Representative Consumer
  • DOI:
    10.2307/2937813
  • 发表时间:
    1989-08
  • 期刊:
  • 影响因子:
    13.7
  • 作者:
    Arthur Lewbel
  • 通讯作者:
    Arthur Lewbel
Nonparametric identification of the classical errors-in-variables model without side information
无辅助信息的经典变量误差模型的非参数识别
  • DOI:
    10.1920/wp.cem.2007.1407
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingyao Hu;Arthur Lewbel;Susanne M. Schennach
  • 通讯作者:
    Susanne M. Schennach
A simple ordered data estimator for inverse density weighted expectations
用于逆密度加权期望的简单有序数据估计器
  • DOI:
    10.1016/j.jeconom.2005.08.005
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Arthur Lewbel;Susanne M. Schennach
  • 通讯作者:
    Susanne M. Schennach
Is Power More Evenly Balanced in Poor Households? Is Power More Evenly Balanced in Poor Households ?
贫困家庭的权力是否更加平衡?
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hélène Couprie;Eugenio Peluso;A. Trannoy;Hélène Couprie;We Thank;Jason Abrevaya;Wei Jiang;J. Duclos;M. Fleurbaey;Peter Lambert;Arthur Lewbel;Michel Le Breton;Federico Perali;Nathalie Picard;Nicolas Ruiz
  • 通讯作者:
    Nicolas Ruiz

Arthur Lewbel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arthur Lewbel', 18)}}的其他基金

Collaborative Research: Empirical Analysis of Social Networks with Unreported Links
协作研究:具有未报告链接的社交网络的实证分析
  • 批准号:
    1919454
  • 财政年份:
    2019
  • 资助金额:
    $ 7.52万
  • 项目类别:
    Standard Grant
Semiparametric Limited Dependent Variable Estimators, with Applications
半参数有限因变量估计器及其应用
  • 批准号:
    9905010
  • 财政年份:
    1999
  • 资助金额:
    $ 7.52万
  • 项目类别:
    Continuing Grant
Estimation of Large Consumer Demand Systems
大型消费者需求系统的估算
  • 批准号:
    9996192
  • 财政年份:
    1998
  • 资助金额:
    $ 7.52万
  • 项目类别:
    Continuing Grant
Estimation of Large Consumer Demand Systems
大型消费者需求系统的估算
  • 批准号:
    9514977
  • 财政年份:
    1996
  • 资助金额:
    $ 7.52万
  • 项目类别:
    Continuing Grant
Non Parametric Estimationa and Testing with Demand Applications
非参数估计和需求应用测试
  • 批准号:
    9210749
  • 财政年份:
    1992
  • 资助金额:
    $ 7.52万
  • 项目类别:
    Continuing Grant
Nonparametric Rank Based Methods for Demand, Welfare, and Production Analysis
基于非参数排名的需求、福利和生产分析方法
  • 批准号:
    9011806
  • 财政年份:
    1990
  • 资助金额:
    $ 7.52万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

HAIRCYCLE: a pilot study to explore and test regenerative, local, bio-based and circular models for human hair waste
HAIRCYCLE:一项试点研究,旨在探索和测试人类毛发废物的再生、局部、生物基和循环模型
  • 批准号:
    AH/Z50550X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.52万
  • 项目类别:
    Research Grant
EAGER: Generalizing Monin-Obukhov Similarity Theory (MOST)-based Surface Layer Parameterizations for Turbulence Resolving Earth System Models (ESMs)
EAGER:将基于 Monin-Obukhov 相似理论 (MOST) 的表面层参数化推广到湍流解析地球系统模型 (ESM)
  • 批准号:
    2414424
  • 财政年份:
    2024
  • 资助金额:
    $ 7.52万
  • 项目类别:
    Standard Grant
Investigating the potential for developing self-regulation in foreign language learners through the use of computer-based large language models and machine learning
通过使用基于计算机的大语言模型和机器学习来调查外语学习者自我调节的潜力
  • 批准号:
    24K04111
  • 财政年份:
    2024
  • 资助金额:
    $ 7.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Enhancing Wahkohtowin (Kinship beyond the immediate family) Community-based models of care to reach and support Indigenous and racialized women of reproductive age and pregnant women in Canada for the prevention of congenital syphilis
加强 Wahkohtowin(直系亲属以外的亲属关系)以社区为基础的护理模式,以接触和支持加拿大的土著和种族育龄妇女以及孕妇,预防先天梅毒
  • 批准号:
    502786
  • 财政年份:
    2024
  • 资助金额:
    $ 7.52万
  • 项目类别:
    Directed Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y000455/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.52万
  • 项目类别:
    Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y001117/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.52万
  • 项目类别:
    Research Grant
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
  • 批准号:
    BB/Y513763/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.52万
  • 项目类别:
    Research Grant
Collaborative Research:CIF:Small:Fisher-Inspired Approach to Quickest Change Detection for Score-Based Models
合作研究:CIF:Small:Fisher 启发的基于评分模型的最快变化检测方法
  • 批准号:
    2334898
  • 财政年份:
    2024
  • 资助金额:
    $ 7.52万
  • 项目类别:
    Standard Grant
Collaborative Research:CIF:Small:Fisher-Inspired Approach to Quickest Change Detection for Score-Based Models
合作研究:CIF:Small:Fisher 启发的基于评分模型的最快变化检测方法
  • 批准号:
    2334897
  • 财政年份:
    2024
  • 资助金额:
    $ 7.52万
  • 项目类别:
    Standard Grant
EEG Based Global Network Models and Platform for Brain States Assessment
基于脑电图的大脑状态评估全球网络模型和平台
  • 批准号:
    DP240102329
  • 财政年份:
    2024
  • 资助金额:
    $ 7.52万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了