Collaborative Research: Empirical Analysis of Social Networks with Unreported Links

协作研究:具有未报告链接的社交网络的实证分析

基本信息

  • 批准号:
    1919454
  • 负责人:
  • 金额:
    $ 18.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

In many social-economic contexts, an individual's behavior depend on his own characteristics, as well as the outcome and characteristics of others. Such dependence called a link; individuals with links are neighbors and a collection of neighbors is referred to as a network. A social network consists of linked individuals. This commonly occurs in applied economic research since links are often not well measured in the research data. This project will estimate the effects of social networks on individual outcomes when the links are either misclassified or not reported in data. The method proposed in this project is adaptable to a wide range of social networks. It also provide a general method for comparing various types of social effects given group characteristics. The project offers an efficient approach for policy analyses that resolves challenges due to data problems or measurement errors in network links. The results of this project provides a way to measure the effects of policies when there is no information on network structure. The results of this project will have a significant impact on empirical research on social networks and policies such as education. This will improve efficiency in business and policy decision making and in the process lead to improved well-being of U.S. citizens.This project identifies and estimates social network models when network links are either misclassified or unobserved. It first derives and characterizes conditions under which some misclassification of links does not interfere with the consistency or asymptotic properties of standard instrumental variable estimators of social effects. It then constructs a consistent estimator of social effects in a model where network links are not observed. This method does not require repeated observations of individual network members. The project will apply this estimator to data from Tennessee's Student/Teacher Achievement Ratio (STAR) Project. Without observing the latent network in each classroom, the research identifies and estimate peer and contextual effects on students' performance in mathematics. The results suggests that peer effects tend to be larger in bigger classes, and that increasing peer effects significantly improve students' average test scores. The results of this research will help businesses and policy makers account for social effects in decision making hence improve the living standards of U.S. citizens.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在许多社会经济背景下,一个人的行为取决于他自己的特点,以及他人的结果和特点。 这种依赖称为链接;具有链接的个体是邻居,邻居的集合称为网络。一个社交网络是由相互联系的个体组成的。 这通常发生在应用经济研究中,因为研究数据中的联系往往没有得到很好的衡量。 这个项目将估计当链接被错误分类或没有在数据中报告时,社交网络对个人结果的影响。 本项目提出的方法适用于广泛的社交网络。 它还提供了一个一般方法来比较各种类型的社会效果给定的群体特征。 该项目提供了一种有效的政策分析方法,解决了由于数据问题或网络连接中的测量错误而带来的挑战。该项目的结果提供了一种方法来衡量政策的效果时,没有信息的网络结构。该项目的结果将对社交网络和教育等政策的实证研究产生重大影响。 这将提高商业和政策决策的效率,并在此过程中导致改善美国公民的福祉。该项目确定和估计社会网络模型时,网络链接被错误分类或未观察到。它首先推导和表征的条件下,一些错误分类的链接不干扰社会影响的标准工具变量估计的一致性或渐近性质。然后,它在一个没有观察到网络链接的模型中构建了一个社会效应的一致估计。 这种方法不需要重复观察单个网络成员。 该项目将应用此估计的数据从田纳西州的学生/教师的成就比(星星)项目。在不观察每个教室中的潜在网络的情况下,本研究识别和估计了同伴和情境对学生数学成绩的影响。结果表明,在较大的班级中,同伴效应往往更大,并且增加同伴效应会显着提高学生的平均考试成绩。 这项研究的结果将有助于企业和政策制定者在决策中考虑社会影响,从而提高美国公民的生活水平。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arthur Lewbel其他文献

Nonparametric identification of the classical errors-in-variables model without side information
无辅助信息的经典变量误差模型的非参数识别
  • DOI:
    10.1920/wp.cem.2007.1407
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingyao Hu;Arthur Lewbel;Susanne M. Schennach
  • 通讯作者:
    Susanne M. Schennach
Exact Aggregation and a Representative Consumer
  • DOI:
    10.2307/2937813
  • 发表时间:
    1989-08
  • 期刊:
  • 影响因子:
    13.7
  • 作者:
    Arthur Lewbel
  • 通讯作者:
    Arthur Lewbel
Collective Behavior with Information Asymmetry
信息不对称的集体行为
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhi Cao;Arthur Lewbel;Wenchao Li;Junjian Yi
  • 通讯作者:
    Junjian Yi
Is Power More Evenly Balanced in Poor Households? Is Power More Evenly Balanced in Poor Households ?
贫困家庭的权力是否更加平衡?
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hélène Couprie;Eugenio Peluso;A. Trannoy;Hélène Couprie;We Thank;Jason Abrevaya;Wei Jiang;J. Duclos;M. Fleurbaey;Peter Lambert;Arthur Lewbel;Michel Le Breton;Federico Perali;Nathalie Picard;Nicolas Ruiz
  • 通讯作者:
    Nicolas Ruiz
A simple ordered data estimator for inverse density weighted expectations
用于逆密度加权期望的简单有序数据估计器
  • DOI:
    10.1016/j.jeconom.2005.08.005
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Arthur Lewbel;Susanne M. Schennach
  • 通讯作者:
    Susanne M. Schennach

Arthur Lewbel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arthur Lewbel', 18)}}的其他基金

Semiparametric Limited Dependent Variable Estimators, with Applications
半参数有限因变量估计器及其应用
  • 批准号:
    9905010
  • 财政年份:
    1999
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Continuing Grant
Estimation of Large Consumer Demand Systems
大型消费者需求系统的估算
  • 批准号:
    9996192
  • 财政年份:
    1998
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Continuing Grant
Estimation of Large Consumer Demand Systems
大型消费者需求系统的估算
  • 批准号:
    9514977
  • 财政年份:
    1996
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Continuing Grant
Non Parametric Estimationa and Testing with Demand Applications
非参数估计和需求应用测试
  • 批准号:
    9210749
  • 财政年份:
    1992
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Continuing Grant
Nonparametric Rank Based Methods for Demand, Welfare, and Production Analysis
基于非参数排名的需求、福利和生产分析方法
  • 批准号:
    9011806
  • 财政年份:
    1990
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Continuing Grant
Macro Models Based on Aggregation of Micro Behavior Using Models of Changes in the Distribution of Individuals
基于个体分布变化模型的微观行为聚合的宏观模型
  • 批准号:
    8712787
  • 财政年份:
    1987
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: An Empirical Blueprint for the Gravitational-Wave Background
合作研究:引力波背景的经验蓝图
  • 批准号:
    2414468
  • 财政年份:
    2024
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Impacts of Automated Vehicles on Traffic Flow Using Empirical Data
合作研究:利用经验数据了解自动驾驶汽车对交通流量的影响
  • 批准号:
    2401476
  • 财政年份:
    2023
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Empirical Constraints on the s- and r-processes from Precision Nebular Abundances
合作研究:精确星云丰度对 s 和 r 过程的经验约束
  • 批准号:
    2307116
  • 财政年份:
    2023
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Empirical Constraints on the s- and r-processes from Precision Nebular Abundances
合作研究:精确星云丰度对 s 和 r 过程的经验约束
  • 批准号:
    2307117
  • 财政年份:
    2023
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Empirical Frequency Band Analysis for Functional Time Series
合作研究:函数时间序列的经验频带分析
  • 批准号:
    2152950
  • 财政年份:
    2022
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Empirical Frequency Band Analysis for Functional Time Series
合作研究:函数时间序列的经验频带分析
  • 批准号:
    2152966
  • 财政年份:
    2022
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: Evaluating hypotheses of long-term woody carbon dynamics with empirical data
合作研究:MRA:用经验数据评估长期木本碳动态的假设
  • 批准号:
    2213579
  • 财政年份:
    2022
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: New: reVISit: Scalable Empirical Evaluation of Interactive Visualizations
合作研究:CCRI:新:reVISit:交互式可视化的可扩展实证评估
  • 批准号:
    2213757
  • 财政年份:
    2022
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: Evaluating hypotheses of long-term woody carbon dynamics with empirical data
合作研究:MRA:用经验数据评估长期木本碳动态的假设
  • 批准号:
    2213580
  • 财政年份:
    2022
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: New: reVISit: Scalable Empirical Evaluation of Interactive Visualizations
合作研究:CCRI:新:reVISit:交互式可视化的可扩展实证评估
  • 批准号:
    2213756
  • 财政年份:
    2022
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了