Multi-Dimensional Computation of Electronic Properties of Semiconductor Microstructures of High Performance Heterojunction Devices

高性能异质结器件半导体微结构电子特性的多维计算

基本信息

项目摘要

It is usual to define the electronic properties of microstructure of solid state devices in relation to the degree of freedom of mobile charge carriers, i. e. simple layered structures are referred as 2- dimensional (2D) systems, double confined structures or quantum wires and quantum balls are defined as 1-D and 0-D systems respectively. In general, these systems are referred to as Ultra-Low Dimensional Systems (ULDS). Current technology is based on the 2-D systems. However, advances in high resolution fine line lithography and crystal growth techniques indicate that microstructure on the scale of quantum wires and balls may be possible. The potential use of the artificial materials with 1-D or 0-D microstructures for computer memory and ultra-high device integration is considerable. Efficient device simulation algorithms are necessary for modeling the properties of the microstructure and indispensable to the introduction of this next generation of VLSI technology. This research project addresses the development of a robust, fast, and flexible algorithm to determine the relevant physical and microstructure parameters for optimal design and performance of devices of the Ultra-low Dimensional Systems. A team of young investigators composed of device physicists, numerical analyst, and computer scientist will be formed as an interdisciplinary group.
通常将固态器件微结构的电学性质定义为与可移动载流子的自由度有关,即将简单的层状结构定义为二维系统,将双限制结构或量子线和量子球分别定义为一维和零维系统。通常,这些系统被称为超低维系统(ULDS)。目前的技术是基于2-D系统的。然而,高分辨率细线光刻和晶体生长技术的进步表明,量子线和量子球级别的微结构是可能的。具有一维或零维微结构的人造材料在计算机存储和超高器件集成方面的潜在用途是相当可观的。高效的器件模拟算法是模拟微结构特性所必需的,也是引入这种下一代VLSI技术所不可缺少的。这项研究项目致力于开发一种健壮、快速和灵活的算法来确定相关的物理和微结构参数,以优化超低维系统的器件设计和性能。一个由设备物理学家、数值分析员和计算机科学家组成的年轻研究小组将组成一个跨学科小组。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jean-Pierre Leburton其他文献

Numerov Schrodinger solver with complex potential boundaries for open multilayer heterojunction systems
用于开放式多层异质结系统的具有复杂电位边界的 Numerov 薛定谔求解器
Unbalanced Ion Flushing Effect in MoS<sub>2</sub> Nanopore Biosensors
  • DOI:
    10.1016/j.bpj.2019.11.980
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Mingye Xiong;Michael Graf;Nagendra Athreya;Aleksandra Radenovic;Jean-Pierre Leburton
  • 通讯作者:
    Jean-Pierre Leburton
Multi-layered heterostructure nanopore sensor for single biomolecule detection
  • DOI:
    10.1016/j.bpj.2021.11.2851
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Mingye Xiong;Nagendra Athreya;Jean-Pierre Leburton
  • 通讯作者:
    Jean-Pierre Leburton
Modeling of the electrically-tunable transistor-injected quantum cascade laser
电可调晶体管注入量子级联激光器的建模
  • DOI:
    10.1063/1.4999751
  • 发表时间:
    2017-12
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Zhiyuan Lin;Kanuo Chen;Fu-Chen Hsiao;Zhuoran Wang;John M. Dallesasse;Jean-Pierre Leburton
  • 通讯作者:
    Jean-Pierre Leburton
「Physics of Quantum Rings」, Chapter 13 「Strained quantum rings」 (ISBN 978-3-642-39196-5)
《量子环物理学》第 13 章“应变量子环”(ISBN 978-3-642-39196-5)
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pilkyung Moon;Euijoon Yoon;Won JunChoi;JaeDong Lee;Jean-Pierre Leburton
  • 通讯作者:
    Jean-Pierre Leburton

Jean-Pierre Leburton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jean-Pierre Leburton', 18)}}的其他基金

Conference on Quantum Devices and Circuits to be held at Alexandria, Egypt, June 4-8, 1996
量子器件和电路会议将于 1996 年 6 月 4 日至 8 日在埃及亚历山大举行
  • 批准号:
    9612780
  • 财政年份:
    1996
  • 资助金额:
    $ 40.05万
  • 项目类别:
    Standard Grant
Particle Transport and Nonlinear Dynamics in Quasi-One- Dimensional Structures
准一维结构中的粒子输运和非线性动力学
  • 批准号:
    9108300
  • 财政年份:
    1991
  • 资助金额:
    $ 40.05万
  • 项目类别:
    Continuing Grant
Research in Transport Theory of One Dimensional Semicon- ductor Structures
一维半导体结构输运理论研究
  • 批准号:
    8510209
  • 财政年份:
    1985
  • 资助金额:
    $ 40.05万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

AF: Small: Equilibrium Computation and Multi-Agent Learning in High-Dimensional Games
AF:小:高维游戏中的平衡计算和多智能体学习
  • 批准号:
    2342642
  • 财政年份:
    2024
  • 资助金额:
    $ 40.05万
  • 项目类别:
    Standard Grant
Novel Numerical Methods for Nonlinear Stochastic PDEs and High Dimensional Computation
非线性随机偏微分方程和高维计算的新数值方法
  • 批准号:
    2309626
  • 财政年份:
    2023
  • 资助金额:
    $ 40.05万
  • 项目类别:
    Continuing Grant
Convergence Accelerator Workshop - Chemical sensing with an olfaction analogue: high-dimensional, bio-inspired sensing and computation
融合加速器研讨会 - 具有嗅觉模拟的化学传感:高维、仿生传感和计算
  • 批准号:
    2231512
  • 财政年份:
    2022
  • 资助金额:
    $ 40.05万
  • 项目类别:
    Standard Grant
CAREER: Inference for High-Dimensional Structures via Subspace Learning: Statistics, Computation, and Beyond
职业:通过子空间学习推理高维结构:统计、计算及其他
  • 批准号:
    2203741
  • 财政年份:
    2021
  • 资助金额:
    $ 40.05万
  • 项目类别:
    Continuing Grant
High Dimensional Computation and Uncertainty
高维计算和不确定性
  • 批准号:
    DP210100831
  • 财政年份:
    2021
  • 资助金额:
    $ 40.05万
  • 项目类别:
    Discovery Projects
Collaborative Research: Inference and Uncertainty Quantification for High Dimensional Systems in Remote Sensing: Methods, Computation, and Applications
合作研究:遥感高维系统的推理和不确定性量化:方法、计算和应用
  • 批准号:
    2053746
  • 财政年份:
    2021
  • 资助金额:
    $ 40.05万
  • 项目类别:
    Continuing Grant
Collaborative Research: Inference and Uncertainty Quantification for High Dimensional Systems in Remote Sensing: Methods, Computation, and Applications
合作研究:遥感高维系统的推理和不确定性量化:方法、计算和应用
  • 批准号:
    2053668
  • 财政年份:
    2021
  • 资助金额:
    $ 40.05万
  • 项目类别:
    Continuing Grant
Advancing High-Dimensional Bayesian Asymptotics and Computation
推进高维贝叶斯渐近学和计算
  • 批准号:
    2015485
  • 财政年份:
    2020
  • 资助金额:
    $ 40.05万
  • 项目类别:
    Standard Grant
CAREER: Inference for High-Dimensional Structures via Subspace Learning: Statistics, Computation, and Beyond
职业:通过子空间学习推理高维结构:统计、计算及其他
  • 批准号:
    1944904
  • 财政年份:
    2020
  • 资助金额:
    $ 40.05万
  • 项目类别:
    Continuing Grant
CAREER: Extracting principles of neural computation from large scale neural recordings through neural network theory and high dimensional statistics
职业:通过神经网络理论和高维统计从大规模神经记录中提取神经计算原理
  • 批准号:
    1845166
  • 财政年份:
    2019
  • 资助金额:
    $ 40.05万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了