CAREER: Inference for High-Dimensional Structures via Subspace Learning: Statistics, Computation, and Beyond
职业:通过子空间学习推理高维结构:统计、计算及其他
基本信息
- 批准号:2203741
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
High-dimensional arrays commonly arise from modern scientific and technological research and have been a central topic in modern statistics and data science. Some areas such as genetics, microbiome studies, brain imaging, hyperspectral imaging, etc., yield a large amount of high-dimensional array data; while in some other areas, data can be recast into high-dimensional array form to facilitate analysis. In these situations, the target parameter is often high-dimensional/high-order, but the important information may lie in dimension-reduced subspaces induced by various structural conditions. How to efficiently exploit these subspaces poses significant statistical and computational challenges. This project aims to address these challenges from a perspective of subspace learning. By taking into account dimension-reduced and low-order subspaces, the PI aims to address a series of statistical and machine learning questions by developing new methodologies and theories with statistical and computational advantages. This project will progress along three major directions: (i) fast estimation and inference for high-dimensional arrays via important subspace sketching; (ii) high-order clustering with theoretical guarantees; (iii) ultrahigh-order tensor singular value decomposition via a tensor-train parameterization. The research will be applicable to a variety of topics involving high-dimensional matrix and tensor data, such as genetics and genomes, reinforcement learning, neuroimaging analysis, material science, recommender design, etc. The PI will also develop user-friendly software packages for the new algorithms and make them available for public use. The PI is committed to training students, especially those from groups underrepresented in STEM, through involvement in the research project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高维数组是现代科学技术研究中的一个重要课题,也是现代统计学和数据科学的一个重要研究方向。一些领域如遗传学、微生物组研究、脑成像、高光谱成像等,产生大量的高维数组数据;而在其他一些领域,数据可以重新转换为高维数组形式以便于分析。在这些情况下,目标参数通常是高维/高阶的,但重要的信息可能在于由各种结构条件诱导的降维子空间。如何有效地利用这些子空间提出了重大的统计和计算挑战。该项目旨在从子空间学习的角度解决这些挑战。通过考虑降维和低阶子空间,PI旨在通过开发具有统计和计算优势的新方法和理论来解决一系列统计和机器学习问题。该项目将沿着三个主要方向进行:(i)通过重要子空间草图对高维阵列的快速估计和推断;(ii)具有理论保证的高阶聚类;(iii)通过张量序列参数化的超高阶张量奇异值分解。该研究将适用于涉及高维矩阵和张量数据的各种主题,例如遗传学和基因组,强化学习,神经成像分析,材料科学,推荐器设计等,PI还将为新算法开发用户友好的软件包,并将其提供给公众使用。PI致力于通过参与研究项目来培训学生,特别是那些来自STEM领域代表性不足的群体的学生。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tensor clustering with planted structures: Statistical optimality and computational limits
具有种植结构的张量聚类:统计最优性和计算限制
- DOI:10.1214/21-aos2123
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Luo, Yuetian;Zhang, Anru R.
- 通讯作者:Zhang, Anru R.
Learning Good State and Action Representations for Markov Decision Process via Tensor Decomposition
- DOI:
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Chengzhuo Ni;Yaqi Duan;M. Dahleh;Mengdi Wang;Anru R. Zhang
- 通讯作者:Chengzhuo Ni;Yaqi Duan;M. Dahleh;Mengdi Wang;Anru R. Zhang
Low-rank Tensor Estimation via Riemannian Gauss-Newton: Statistical Optimality and Second-Order Convergence
- DOI:
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Yuetian Luo;Anru R. Zhang
- 通讯作者:Yuetian Luo;Anru R. Zhang
Learning Good State and Action Representations via Tensor Decomposition
- DOI:10.1109/isit45174.2021.9518158
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Chengzhuo Ni;Anru Zhang;Yaqi Duan;Mengdi Wang
- 通讯作者:Chengzhuo Ni;Anru Zhang;Yaqi Duan;Mengdi Wang
Core shrinkage covariance estimation for matrix-variate data
- DOI:10.1093/jrsssb/qkad070
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:P. Hoff;A. Mccormack;Anru R. Zhang
- 通讯作者:P. Hoff;A. Mccormack;Anru R. Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anru Zhang其他文献
Learning Markov Models Via Low-Rank Optimization
通过低秩优化学习马尔可夫模型
- DOI:
10.1287/opre.2021.2115 - 发表时间:
2019-06 - 期刊:
- 影响因子:2.7
- 作者:
Ziwei Zhu;Xudong Li;Mengdi Wang;Anru Zhang - 通讯作者:
Anru Zhang
[A prospective study of early detection for primary liver cancer].
原发性肝癌早期检测的前瞻性研究[J].
- DOI:
- 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
Bing;Boheng Zhang;Yaochao Xu;Wenping Wang;Yuefang Shen;Anru Zhang;Zhong - 通讯作者:
Zhong
Anru Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anru Zhang', 18)}}的其他基金
CAREER: Inference for High-Dimensional Structures via Subspace Learning: Statistics, Computation, and Beyond
职业:通过子空间学习推理高维结构:统计、计算及其他
- 批准号:
1944904 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Dimension reduction for high-dimensional high-order data
高维高阶数据的降维
- 批准号:
1811868 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Towards Tight Guarantees of Markov Chain Sampling Algorithms in High Dimensional Statistical Inference
职业:高维统计推断中马尔可夫链采样算法的严格保证
- 批准号:
2237322 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
- 批准号:
2347760 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: High-dimensional inference and applications to modern biology
职业:高维推理及其在现代生物学中的应用
- 批准号:
2142476 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Beyond Conditional Independence: New Model-Free Targets for High-Dimensional Inference
职业:超越条件独立:高维推理的新无模型目标
- 批准号:
2045981 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Inference for High-Dimensional Structures via Subspace Learning: Statistics, Computation, and Beyond
职业:通过子空间学习推理高维结构:统计、计算及其他
- 批准号:
1944904 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Robust Causal And Statistical Inference In High Dimensional Structured Systems With Hidden Variables
职业:具有隐藏变量的高维结构化系统中的稳健因果和统计推断
- 批准号:
1942239 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Valid and Scalable Inference for High-dimensional Statistical Models
职业:高维统计模型的有效且可扩展的推理
- 批准号:
1844481 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
- 批准号:
1752614 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Smart Sampling and Correlation-Driven Inference for High Dimensional Signals
职业:高维信号的智能采样和相关驱动推理
- 批准号:
1553954 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Smart Sampling and Correlation-Driven Inference for High Dimensional Signals
职业:高维信号的智能采样和相关驱动推理
- 批准号:
1700506 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant














{{item.name}}会员




