Complex Interpolation and Complex Convexity
复数插值和复凸性
基本信息
- 批准号:8901861
- 负责人:
- 金额:$ 4.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1989
- 资助国家:美国
- 起止时间:1989-07-01 至 1992-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The notion of interpolation indicated by the title of Professor Slodkowski's mathematical research project may be explained as follows. Mathematical objects of many sorts frequently come not singly but in whole families, individual members of which are located by specifying the value of a parameter. (For instance, a famous family of Banach spaces is indexed by the set of real numbers greater than or equal to one, with plus infinity thrown in for completeness.) The general problem of interpolation is: given members of the family located by extreme values of the parameter, fill in all the rest in some natural, optimal way. The particular interpolation problems addressed by this project have fundamental implications for mathematical analysis. More specifically, these problems have to do with multivariable complex interpolation theory and some related aspects of complex convexity. They are divided into three broad categories. The problems in the first group deal with the interpolation of infinite-dimensional spaces, regularity questions, and interpolation of convex and polynomially convex sets. The second category of problems concerns polynomially convex hulls. The third has to do with multifunctions that satisfy analogues of the function-theoretic properties of analyticity and harmonicity.
的标题所表明的插值的概念 斯洛德科夫斯基教授的数学研究项目可能是 如下所述。各种各样的数学对象 经常不是单独出现,而是在整个家庭,个人 其成员通过指定 参数. (For例如,一个著名的Banach空间族是 由大于或等于一的一组真实的数字索引, (加上无穷大以求完整)。总 插值问题是:给定家庭成员位于 通过参数的极值,将所有其余部分填充到一些 自然,最佳的方式。特殊插值问题 该项目所解决的问题对以下方面具有根本性的影响: 数学分析 更具体地说,这些问题与 多变量复插值理论及相关 复杂凸性的方面。它们分为三大类 类别第一组中的问题涉及 无限维空间的插值,正则性 问题,以及凸和多项式凸的插值 集.第二类问题涉及多项式 凸壳第三个与多功能有关, 满足的函数理论性质的类似物 解析性和调和性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zbigniew Slodkowski其他文献
Hartogs-type extension for tube-like domains in $$\mathbb C^2$$
- DOI:
10.1007/s00208-014-1161-0 - 发表时间:
2014-12-23 - 期刊:
- 影响因子:1.400
- 作者:
Al Boggess;Roman J. Dwilewicz;Zbigniew Slodkowski - 通讯作者:
Zbigniew Slodkowski
Semigroups of Operators on Hardy Spaces and Cocycles of Holomorphic Flows
- DOI:
10.1007/s11785-010-0067-4 - 发表时间:
2010-04-16 - 期刊:
- 影响因子:0.800
- 作者:
Farhad Jafari;Zbigniew Slodkowski;Thomas Tonev - 通讯作者:
Thomas Tonev
Domains with a continuous exhaustion in weakly complete surfaces
- DOI:
10.1007/s00209-020-02466-z - 发表时间:
2020-02-04 - 期刊:
- 影响因子:1.000
- 作者:
Samuele Mongodi;Zbigniew Slodkowski - 通讯作者:
Zbigniew Slodkowski
Canonical models for a class of polynomially convex hulls
- DOI:
10.1007/s002080050063 - 发表时间:
1997-05-06 - 期刊:
- 影响因子:1.400
- 作者:
Zbigniew Slodkowski - 通讯作者:
Zbigniew Slodkowski
A Class of Strictly Pseudoconvex Domains with Non-pluripolar Core
- DOI:
10.1007/s12220-022-00873-8 - 发表时间:
2022-02-05 - 期刊:
- 影响因子:1.500
- 作者:
Zbigniew Slodkowski - 通讯作者:
Zbigniew Slodkowski
Zbigniew Slodkowski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zbigniew Slodkowski', 18)}}的其他基金
Pseudoconcave Sets and Positive Closed Currents
赝凹集和正闭电流
- 批准号:
0075154 - 财政年份:2000
- 资助金额:
$ 4.09万 - 项目类别:
Standard Grant
Mathematical Sciences: Polynomially Convex Hulls and Evolution of Pseudoconvex Sets by Levi Curvature
数学科学:多项式凸壳和列维曲率的伪凸集演化
- 批准号:
9706970 - 财政年份:1997
- 资助金额:
$ 4.09万 - 项目类别:
Continuing Grant
Mathematical Sciences: Polynomially Convex Hulls and their Applications
数学科学:多项式凸壳及其应用
- 批准号:
9412392 - 财政年份:1995
- 资助金额:
$ 4.09万 - 项目类别:
Standard Grant
Mathematical Sciences: Envelopes of Holomorphy and Holomorphic Motions
数学科学:全纯和全纯运动的包络
- 批准号:
9106976 - 财政年份:1991
- 资助金额:
$ 4.09万 - 项目类别:
Continuing Grant
Mathematical Sciences: Complex interpolation theory and analytic multifunctions
数学科学:复插值理论和解析多功能
- 批准号:
8702027 - 财政年份:1987
- 资助金额:
$ 4.09万 - 项目类别:
Standard Grant
相似海外基金
Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
- 批准号:
2401482 - 财政年份:2024
- 资助金额:
$ 4.09万 - 项目类别:
Continuing Grant
CAREER: Interpolation, stability, and rationality
职业:插值、稳定、合理
- 批准号:
2338345 - 财政年份:2024
- 资助金额:
$ 4.09万 - 项目类别:
Continuing Grant
Smooth Solutions to Linear Inequalities, Constrained Sobolev interpolation, and Trace Problems on Domains
线性不等式的平滑解、约束 Sobolev 插值和域上的追踪问题
- 批准号:
2247429 - 财政年份:2023
- 资助金额:
$ 4.09万 - 项目类别:
Standard Grant
Developing a new estimation method of wide-are genetic diversity using spatial interpolation
利用空间插值开发一种新的大范围遗传多样性估计方法
- 批准号:
22KJ3108 - 财政年份:2023
- 资助金额:
$ 4.09万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Distributed Graph-based Semi-supervised Classifiers: Sampling and Interpolation
基于分布式图的半监督分类器:采样和插值
- 批准号:
551992-2020 - 财政年份:2022
- 资助金额:
$ 4.09万 - 项目类别:
Alliance Grants
Interpolation Techniques for Particle-In-Cell Methods
细胞内粒子方法的插值技术
- 批准号:
569325-2022 - 财政年份:2022
- 资助金额:
$ 4.09万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Trajectory error estimation for machining center cutter path due to motion error between interpolation segments
插补段之间运动误差引起的加工中心刀具轨迹轨迹误差估计
- 批准号:
21K03811 - 财政年份:2021
- 资助金额:
$ 4.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Distributed Graph-based Semi-supervised Classifiers: Sampling and Interpolation
基于分布式图的半监督分类器:采样和插值
- 批准号:
551992-2020 - 财政年份:2021
- 资助金额:
$ 4.09万 - 项目类别:
Alliance Grants
Interpolation, Cloning and Broadcasting in Operator Systems
操作系统中的插值、克隆和广播
- 批准号:
532792-2019 - 财政年份:2020
- 资助金额:
$ 4.09万 - 项目类别:
Postdoctoral Fellowships
Smart Video Frame Interpolation using Compact Neural Networks
使用紧凑神经网络的智能视频帧插值
- 批准号:
554191-2020 - 财政年份:2020
- 资助金额:
$ 4.09万 - 项目类别:
University Undergraduate Student Research Awards