Pseudoconcave Sets and Positive Closed Currents

赝凹集和正闭电流

基本信息

  • 批准号:
    0075154
  • 负责人:
  • 金额:
    $ 9.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-06-15 至 2004-05-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT: The general aim of this project is to study the structure of positive closed currents supported by topologically thin pseudoconcave sets, focusing primarilly on the relationship between properties of currents and their supports. Topologically thin sets in two complex dimensions are those fibered along nowhere dense sets by a family of complex lines; their most important subclass is formed by pluripolar pseudoconvex ones. The specific questions to be considered group around the problems of characterization of supports of positive closed currents, characterization of positive closed currents in topological terms, uniqueness phenomena for positive closed currents, and related problems of branching structure of thin pseudoconcave sets. Problems involving the branching structure concern analogs of the mondromy group for thin pseudoconcave sets and properties of the order structure on the reduced homology group of the complement of the set in the ambient complex projective space. In the general context the problems addressed in this project concern the the structure of currents with the singular supports. Currents are generalizations of distributions to the geometrical setting and, as such, areuseful to analize low regularity phenomena that are studied with increasingfrequency in modern science. The broader aim of this project is to contribute to the understanding of the notion of current and to increase its applica- bility.
摘要:本课题的总体目标是研究拓扑薄伪凹集支撑的正闭合电流的结构,主要关注电流性质与其支撑之间的关系。两个复维空间的拓扑薄集是由一组复线沿无密度集编织而成的拓扑薄集;它们最重要的子类是由多极伪凸类构成的。要考虑的具体问题是围绕着正闭流支点的表征问题,正闭流的拓扑表征问题,正闭流的唯一性现象,以及细假凹集分支结构的相关问题。分支结构问题涉及到复射影空间中薄伪凹集的单项式群的类似问题以及该集合的补的约同调群上的阶结构性质。在一般情况下,本项目解决的问题涉及具有单一支撑的电流结构。电流是几何分布的概括,因此,对于分析现代科学中越来越频繁研究的低规律性现象是有用的。本计画更广泛的目标是促进对电流概念的理解,并增加其适用性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zbigniew Slodkowski其他文献

Hartogs-type extension for tube-like domains in $$\mathbb C^2$$
  • DOI:
    10.1007/s00208-014-1161-0
  • 发表时间:
    2014-12-23
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Al Boggess;Roman J. Dwilewicz;Zbigniew Slodkowski
  • 通讯作者:
    Zbigniew Slodkowski
Semigroups of Operators on Hardy Spaces and Cocycles of Holomorphic Flows
  • DOI:
    10.1007/s11785-010-0067-4
  • 发表时间:
    2010-04-16
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Farhad Jafari;Zbigniew Slodkowski;Thomas Tonev
  • 通讯作者:
    Thomas Tonev
Domains with a continuous exhaustion in weakly complete surfaces
  • DOI:
    10.1007/s00209-020-02466-z
  • 发表时间:
    2020-02-04
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Samuele Mongodi;Zbigniew Slodkowski
  • 通讯作者:
    Zbigniew Slodkowski
Canonical models for a class of polynomially convex hulls
  • DOI:
    10.1007/s002080050063
  • 发表时间:
    1997-05-06
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Zbigniew Slodkowski
  • 通讯作者:
    Zbigniew Slodkowski
A Class of Strictly Pseudoconvex Domains with Non-pluripolar Core
  • DOI:
    10.1007/s12220-022-00873-8
  • 发表时间:
    2022-02-05
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Zbigniew Slodkowski
  • 通讯作者:
    Zbigniew Slodkowski

Zbigniew Slodkowski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zbigniew Slodkowski', 18)}}的其他基金

Mathematical Sciences: Polynomially Convex Hulls and Evolution of Pseudoconvex Sets by Levi Curvature
数学科学:多项式凸壳和列维曲率的伪凸集演化
  • 批准号:
    9706970
  • 财政年份:
    1997
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Polynomially Convex Hulls and their Applications
数学科学:多项式凸壳及其应用
  • 批准号:
    9412392
  • 财政年份:
    1995
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Envelopes of Holomorphy and Holomorphic Motions
数学科学:全纯和全纯运动的包络
  • 批准号:
    9106976
  • 财政年份:
    1991
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Continuing Grant
Complex Interpolation and Complex Convexity
复数插值和复凸性
  • 批准号:
    8901861
  • 财政年份:
    1989
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Complex interpolation theory and analytic multifunctions
数学科学:复插值理论和解析多功能
  • 批准号:
    8702027
  • 财政年份:
    1987
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Fuzzy Sets的视频差错掩盖技术研究
  • 批准号:
    60672134
  • 批准年份:
    2006
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Arithmetic Structure in Dense Sets
稠密集中的算术结构
  • 批准号:
    2401117
  • 财政年份:
    2024
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Continuing Grant
Spatial restriction of exponential sums to thin sets and beyond
指数和对稀疏集及以上的空间限制
  • 批准号:
    2349828
  • 财政年份:
    2024
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Standard Grant
Research Initiation Award: Turan-type problems on partially ordered sets
研究启动奖:偏序集上的图兰型问题
  • 批准号:
    2247163
  • 财政年份:
    2023
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Standard Grant
New approaches for leveraging single-cell data to identify disease-critical genes and gene sets
利用单细胞数据识别疾病关键基因和基因集的新方法
  • 批准号:
    10768004
  • 财政年份:
    2023
  • 资助金额:
    $ 9.56万
  • 项目类别:
Kakeya sets and rectifiability
挂屋组和可校正性
  • 批准号:
    2247233
  • 财政年份:
    2023
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Invariant Sets for Provably Safe Autonomy
协作研究:数据驱动的不变集可证明安全的自治
  • 批准号:
    2303157
  • 财政年份:
    2023
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Controllable sets for nonlinear switched models with applications to infectious diseases
LEAPS-MPS:非线性切换模型的可控集及其在传染病中的应用
  • 批准号:
    2315862
  • 财政年份:
    2023
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Standard Grant
On a Combinatorial Characterization of Dynamical Invariant Sets of Regulatory Networks
关于调节网络动态不变集的组合表征
  • 批准号:
    23K03240
  • 财政年份:
    2023
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Constructing large scale data sets, developing methods to analyze such data sets, and their empirical implementations
构建大规模数据集,开发分析此类数据集的方法及其实证实施
  • 批准号:
    23K17285
  • 财政年份:
    2023
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Investigating mechanisms of consumer reactions to promotions with brand consideration sets.
研究消费者对带有品牌考虑因素的促销活动的反应机制。
  • 批准号:
    23KJ0655
  • 财政年份:
    2023
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了