Mathematical Sciences: Finite Local Cohomology Rings and Minimally Regular Local Rings

数学科学:有限局部上同调环和最小正则局部环

基本信息

  • 批准号:
    8905306
  • 负责人:
  • 金额:
    $ 1.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1989
  • 资助国家:
    美国
  • 起止时间:
    1989-07-01 至 1990-07-01
  • 项目状态:
    已结题

项目摘要

The research involved is in two distinct but related areas of local commutative algebra. One area is the study of systems of parameters in local rings whose smaller local cohomology modules have finite length and the effect of blowing-up an ideal generated by a system of parameters on such. The second area is the study of minimal birational regular local rings and connections with the regular closure of ideals. This project involves research on the interface of commutative algebra and algebraic geometry. Given a curve, a commutative algebra can be associated with it. Information derived from studying the commutative algebra supplies information about the curve. This is a rapidly developing area which impacts many areas of mathematics.
所涉及的研究是在两个不同但相关的领域 局部交换代数一个领域是系统研究 局部上同调较小的局部环中参数的 模块具有有限的长度和爆破的效果, 由这样的参数系统产生的理想。第二 面积是研究极小双有理正则局部环, 与理想的正则闭包的关系。 本项目涉及的接口的研究 交换代数和代数几何。给定曲线, 交换代数可以与之相关联。信息 从研究交换代数用品 关于曲线的信息这是一个发展迅速的领域 影响了数学的许多领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bernard Johnston其他文献

Toward parametric Cohen-Macaulayfication of two-dimensional finite local cohomology domains
  • DOI:
    10.1007/bf02571408
  • 发表时间:
    1991-05-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Bernard Johnston
  • 通讯作者:
    Bernard Johnston

Bernard Johnston的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bernard Johnston', 18)}}的其他基金

Mathematical Sciences: Finite Local Cohomology Rings and Minimally Regular Local Rings
数学科学:有限局部上同调环和最小正则局部环
  • 批准号:
    9096307
  • 财政年份:
    1990
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Continuing Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Mathematical Sciences: Geometric methods in the representation theory of affine Hecke algebras, finite reductive groups and character sheaves
数学科学:仿射 Hecke 代数、有限约简群和特征轮表示论中的几何方法
  • 批准号:
    1303060
  • 财政年份:
    2013
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Continuing Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - "Finite Element Exterior Calculus"
NSF/CBMS 数学科学区域会议 - “有限元外微积分”
  • 批准号:
    1138011
  • 财政年份:
    2011
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Adaptive Finite Element Methods for Partial Differential Equations; Spring 2009, College Station, TX
CBMS 数学科学区域会议 - 偏微分方程的自适应有限元方法;
  • 批准号:
    0834176
  • 财政年份:
    2009
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometric methods in the representation theory of affine Hecke algebras, finite reductive groups and quantum groups
数学科学:仿射 Hecke 代数、有限约简群和量子群表示论中的几何方法
  • 批准号:
    0758262
  • 财政年份:
    2008
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Continuing Grant
CBMS Regional Conference in the Mathematical Sciences - "Finite Morse Index Solutions and Related Topics" -Winter 2007
CBMS 数学科学区域会议 - “有限莫尔斯指数解决方案和相关主题” - 2007 年冬季
  • 批准号:
    0628079
  • 财政年份:
    2007
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences entitled Superconvergence in Finite Element Methods to be held May-June, 2000, in Lubbock, Texas
NSF/CBMS 数学科学区域会议,题为“有限元方法中的超收敛”,将于 2000 年 5 月至 6 月在德克萨斯州拉伯克举行
  • 批准号:
    9979214
  • 财政年份:
    2000
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences Blocks of Finite Reductive Groups, Deligne-Luszig Varieties,and Complex Reflections Groups
NSF/CBMS 有限还原群、Deligne-Luszig 簇和复反射群数学科学块区域会议
  • 批准号:
    9714127
  • 财政年份:
    1998
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Motivic Cohomology with Finite Coefficients
数学科学:有限系数的动机上同调
  • 批准号:
    9796325
  • 财政年份:
    1997
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Actions of Finite Groups and Finite Dimensional Hopf Algebras on Rings
数学科学:有限群和有限维霍普夫代数在环上的作用
  • 批准号:
    9618521
  • 财政年份:
    1997
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Conference on Finite Fields: Theory, Applications and Algorithms; August, 1997; Waterloo, Canada
数学科学:有限域会议:理论、应用和算法;
  • 批准号:
    9616895
  • 财政年份:
    1997
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了