Idealizations and the Reliability of Dimensional Analysis
尺寸分析的理想化和可靠性
基本信息
- 批准号:8920699
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1990
- 资助国家:美国
- 起止时间:1990-10-01 至 1991-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Science and engineering both benefit from a maximization of the realism of their analyses and associated computations. A major constraint on such realism is the need to achieve real computability. It is in part because of this need that idealizations and approximations get introduced in the first place into scientific and engineering analyses. Given the desirability of maximizing realism and minimizing idealization and approximation, dimensional analysis is a godsend because it serves as a surrogate for actual derivations. Hence, more realistic analyses can be used than would otherwise be possible. Unfortunately, dimensional analysis is not entirely a "something for nothing" procedure. There are significant and challenging problems connected with its application. Dr. Laymon, under this research grant, is investigating different variants of dimensional analysis for their various strengths and weaknesses. Since it is the case that idealizations and simplifications are also employed in dimensional analysis, he is also investigating how such idealizations and simplifications are justified and introduced.
科学和工程都受益于他们的分析和相关计算的现实性最大化。这种现实性的一个主要限制是需要实现真正的可计算性。在某种程度上,正是由于这种需要,理想化和近似首先被引入到科学和工程分析中。考虑到最大化现实主义和最小化理想化和近似值的可取性,量纲分析是天赐之物,因为它可以作为实际推导的替代品。因此,可以使用比其他方法更现实的分析。不幸的是,量纲分析并不完全是一个“不劳而获”的过程。在它的应用中存在着重大的和具有挑战性的问题。雷蒙博士,在这项研究的资助下,正在研究量纲分析的不同变体,因为它们有不同的优缺点。由于理想化和简化也被用于维度分析,他也在研究这种理想化和简化是如何被证明和引入的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ronald Laymon其他文献
Demonstrative induction, old and new evidence and the accuracy of the electrostatic inverse square law
- DOI:
10.1007/bf01064529 - 发表时间:
1994-04-01 - 期刊:
- 影响因子:1.300
- 作者:
Ronald Laymon - 通讯作者:
Ronald Laymon
The computational and confirmational differences between the social and the physical sciences
- DOI:
10.1007/bf02379647 - 发表时间:
1993-12-01 - 期刊:
- 影响因子:0.500
- 作者:
Ronald Laymon - 通讯作者:
Ronald Laymon
The Meselson-Stahl Experiment: “the Most Beautiful Experiment in Biology”
梅塞尔森-斯塔尔实验:“生物学中最美丽的实验”
- DOI:
10.1007/978-3-030-62565-8_2 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
A. Franklin;Ronald Laymon - 通讯作者:
Ronald Laymon
Defenses against charges of artistic failure: Some legal analogies
- DOI:
10.1007/bf01207670 - 发表时间:
1994-03-01 - 期刊:
- 影响因子:1.300
- 作者:
Ronald Laymon - 通讯作者:
Ronald Laymon
Experimentation and the legitimacy of idealization
实验与理想化的合法性
- DOI:
10.1007/bf00989579 - 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
Ronald Laymon - 通讯作者:
Ronald Laymon
Ronald Laymon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ronald Laymon', 18)}}的其他基金
The Incorporation of Scientific Causal Knowledge into the Law
将科学因果知识纳入法律
- 批准号:
9411006 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
The Role of Idealizations and Approximations in Science and Engineering
理想化和近似在科学和工程中的作用
- 批准号:
8608167 - 财政年份:1986
- 资助金额:
-- - 项目类别:
Standard Grant
Idealization and Approximation in Scientific Theories
科学理论中的理想化和近似化
- 批准号:
8309607 - 财政年份:1984
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
CAREER: Reliability of Three-dimensional Interconnects for Heterogeneous Integration: An Integrated Experimental and Modeling Study
职业:异构集成三维互连的可靠性:综合实验和建模研究
- 批准号:
2144033 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Survival and Reliability Models with High Dimensional Data
具有高维数据的生存和可靠性模型
- 批准号:
RGPIN-2017-04537 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
A Pilot Study of Determining the Reliability of a New Three-Dimensional Scanning System for Measuring Truncal Thickness After Breast Cancer Surgery
确定用于测量乳腺癌术后躯干厚度的新型三维扫描系统可靠性的初步研究
- 批准号:
21K21164 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Survival and Reliability Models with High Dimensional Data
具有高维数据的生存和可靠性模型
- 批准号:
RGPIN-2017-04537 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Survival and Reliability Models with High Dimensional Data
具有高维数据的生存和可靠性模型
- 批准号:
RGPIN-2017-04537 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Survival and Reliability Models with High Dimensional Data
具有高维数据的生存和可靠性模型
- 批准号:
RGPIN-2017-04537 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Survival and Reliability Models with High Dimensional Data
具有高维数据的生存和可靠性模型
- 批准号:
RGPIN-2017-04537 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Survival and Reliability Models with High Dimensional Data
具有高维数据的生存和可靠性模型
- 批准号:
RGPIN-2017-04537 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Reliability in finite element method for higher dimensional space problems
高维空间问题的有限元方法的可靠性
- 批准号:
229809-2011 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Reliability in finite element method for higher dimensional space problems
高维空间问题的有限元方法的可靠性
- 批准号:
229809-2011 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual