Polynomials Orthogonal on the Unit Circle in Numerical Analysis & Signal Processing
数值分析中单位圆正交多项式
基本信息
- 批准号:9002884
- 负责人:
- 金额:$ 4.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1990
- 资助国家:美国
- 起止时间:1990-07-01 至 1992-01-01
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Numerical analysis is of importance in an increasing number of areas, owing in part to the ever - expanding role of computation in the mathematical sciences. Many algorithms in numerical analysis use polynomials orthogonal on (a subset of) a real interval. These algorithms include schemes for polynomial least squares approximation, Gaussian quadrature, and the Lanczos and conjugate gradient methods. It is planned to develop analogous algorithms that use polynomials orthogonal on the unit circle, also known as Szego polynomials. Szego polynomials are related to approximation by trigonometric polynomials, similarly as polynomials orthogonal on an interval are related to approximation by (algebraic) polynomials. Szego polynomials satisfy a recurrence relation with few terms. This makes them attractive to use in computations. They have already been applied successfully in algorithms for computing eigenvalues of unitary matrices, a problem that arises in certain frequency estimation methods in signal processing.
数值分析在越来越多的领域发挥着重要作用,部分原因是计算在数学科学中的作用不断扩大。数值分析中的许多算法使用在实区间(其子集)上正交的多项式。这些算法包括多项式最小二乘逼近、高斯求积、Lanczos和共轭梯度法。它计划开发类似的算法,使用在单位圆上正交的多项式,也称为Szego多项式。Szego多项式与三角多项式的逼近有关,与区间上正交的多项式与(代数)多项式的逼近类似。Szego多项式满足一个少项递推关系。这使得它们在计算中使用起来很有吸引力。它们已经成功地应用于计算酉阵的特征值的算法中,这是信号处理中某些频率估计方法所出现的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lothar Reichel其他文献
An asymptotically orthonormal polynomial family
- DOI:
10.1007/bf01934921 - 发表时间:
1984-12-01 - 期刊:
- 影响因子:1.700
- 作者:
Lothar Reichel - 通讯作者:
Lothar Reichel
New zero-finders for trust-region computations
- DOI:
10.1007/s11075-016-0260-2 - 发表时间:
2017-01-03 - 期刊:
- 影响因子:2.000
- 作者:
Maged Alkilayh;Lothar Reichel;Jin Yun Yuan - 通讯作者:
Jin Yun Yuan
The ordering of tridiagonal matrices in the cyclic reduction method for Poisson's equation
- DOI:
10.1007/bf01409785 - 发表时间:
1989-02-01 - 期刊:
- 影响因子:2.200
- 作者:
Lothar Reichel - 通讯作者:
Lothar Reichel
Workshop Approximation Methods and Fast Algorithms Hasenwinkel
研讨会近似方法和快速算法 Hasenwinkel
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Ole Christensen;Lothar Reichel;Karla Rost - 通讯作者:
Karla Rost
Averaged Nystr¨om interpolants for the solution of Fredholm integral equations of the second kind
第二类 Fredholm 积分方程解的平均 Nyström 插值
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
L. Fermo;Lothar Reichel;Giuseppe Rodriguez;Miodrag M Spalevi´c - 通讯作者:
Miodrag M Spalevi´c
Lothar Reichel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lothar Reichel', 18)}}的其他基金
Matrix Functions, Rational Approximation, and Quadrature with Applications
矩阵函数、有理逼近和求积及其应用
- 批准号:
1115385 - 财政年份:2011
- 资助金额:
$ 4.37万 - 项目类别:
Continuing Grant
Collaborative Research on Quadrature and Orthogonal Polynomials in Large-Scale Computation
大规模计算中求积和正交多项式的协作研究
- 批准号:
0107858 - 财政年份:2001
- 资助金额:
$ 4.37万 - 项目类别:
Standard Grant
Collaborative Research on Numerical Methods for Image Processing
图像处理数值方法的合作研究
- 批准号:
9806413 - 财政年份:1998
- 资助金额:
$ 4.37万 - 项目类别:
Standard Grant
Computational Problems in Biomedical Engineering
生物医学工程中的计算问题
- 批准号:
9721436 - 财政年份:1998
- 资助金额:
$ 4.37万 - 项目类别:
Standard Grant
Mathematical Sciences: Collaborative Research on Iterative Methods for Image Restoration
数学科学:图像恢复迭代方法的合作研究
- 批准号:
9404706 - 财政年份:1995
- 资助金额:
$ 4.37万 - 项目类别:
Standard Grant
Polynomials Orthogonal on the Unit Circle in Numerical Analysis & Signal Processing
数值分析中单位圆正交多项式
- 批准号:
9296167 - 财政年份:1992
- 资助金额:
$ 4.37万 - 项目类别:
Standard Grant
Iterative Methods for Large Linear Systems of Equations and Related Questions
大型线性方程组的迭代方法及相关问题
- 批准号:
9205531 - 财政年份:1992
- 资助金额:
$ 4.37万 - 项目类别:
Continuing Grant
相似海外基金
Orthogonal Sensing Strategies for Soft Sensors to Discern Multiple Stimuli
软传感器识别多重刺激的正交传感策略
- 批准号:
DP240101993 - 财政年份:2024
- 资助金额:
$ 4.37万 - 项目类别:
Discovery Projects
DMS/NIGMS 1: Multilevel stochastic orthogonal subspace transformations for robust machine learning with applications to biomedical data and Alzheimer's disease subtyping
DMS/NIGMS 1:多级随机正交子空间变换,用于稳健的机器学习,应用于生物医学数据和阿尔茨海默病亚型分析
- 批准号:
2347698 - 财政年份:2024
- 资助金额:
$ 4.37万 - 项目类别:
Continuing Grant
Biotin Orthogonal Streptavidin System (BOSS) for Drug Pre-Targeting
用于药物预靶向的生物素正交链霉亲和素系统 (BOSS)
- 批准号:
10606180 - 财政年份:2023
- 资助金额:
$ 4.37万 - 项目类别:
Orthogonal split luciferases for imaging multiplexed cellular behaviors
用于多重细胞行为成像的正交分裂荧光素酶
- 批准号:
10730660 - 财政年份:2023
- 资助金额:
$ 4.37万 - 项目类别:
Developing an integrated pipeline for routine generation of orthogonal GPCR-targeting nanobodies
开发用于常规生成正交 GPCR 靶向纳米抗体的集成管道
- 批准号:
10603669 - 财政年份:2023
- 资助金额:
$ 4.37万 - 项目类别:
CAREER: Chemical Tools for Bio-Orthogonal Neuromodulation
职业:生物正交神经调节的化学工具
- 批准号:
2238400 - 财政年份:2023
- 资助金额:
$ 4.37万 - 项目类别:
Continuing Grant
Collaborative Research: An Optimal Algorithm for Orthogonal Eigenvectors of Symmetric Tridiagonals
协作研究:对称三对角线正交特征向量的最优算法
- 批准号:
2309596 - 财政年份:2023
- 资助金额:
$ 4.37万 - 项目类别:
Standard Grant
Stimuli-responsive porous soft materials by orthogonal linkage chemistries
正交连接化学刺激响应多孔软材料
- 批准号:
22KF0207 - 财政年份:2023
- 资助金额:
$ 4.37万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Directed Evolution of an Orthogonal Quadruplet Codon-based Genetic Code
基于正交四联体密码子的遗传密码的定向进化
- 批准号:
EP/Y014154/1 - 财政年份:2023
- 资助金额:
$ 4.37万 - 项目类别:
Fellowship