Matrix Functions and Network Analysis

矩阵函数和网络分析

基本信息

  • 批准号:
    1720259
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Networks are important subjects of study in several fields, including biology, social sciences, and security. Two important properties of networks that are often overlooked are that they are dynamic (change over time), and have features that are relevant at different scales. Thus, it is important to study networks from a dynamic and multiscale point of view. A natural model is to assume that we have not just one network, but a family of networks, indexed by one parameter (or may be more). That parameter can track changes as time passes, or as one change one's focus to different scales. In this project the PIs will develop analysis tools and techniques that provide useful insights, but are also efficiently computable for large networks, even when dealing with many values for the parameter. They concentrate on several measures of interest in the network analysis literature, like measures of centrality, hubs and authorities, good broadcasters and good receivers. The study of these measures becomes more difficult for larger networks.Methods for discovering important features of a network are often based on matrix functions. Two of them are the matrix exponential and the resolvent; these can be heuristically justified as measuring connectivity between nodes by weighted sums of paths connecting them, and modifications of these functions can be easily devised to stress some features of the network over others. The PIs have developed methods for approximate computation and error estimation that can be applied to a wide class matrix functions. They will adapt and develop methods of approximate computation, and determine error estimates for these methods, as relevant to the project setting. Some quantifications of network features involve matrix decompositions, like the eigenvalue or singular value decompositions, while others involve only simple matrix summaries, like the diagonal entries, or row and column sums. The PIs will devise approaches for carrying out decompositions that take advantage of the closeness between the matrices when the parameters are close, in order to reduce the computational burden and to better keep track of the parts of the decomposition that rise or fall in importance as the parameter changes.
网络是生物学、社会科学和安全等多个领域的重要研究课题。网络的两个重要特性经常被忽视,即它们是动态的(随时间变化),并且具有在不同尺度上相关的特征。因此,从动态和多尺度的角度研究网络是非常重要的。一个自然的模型是假设我们不仅有一个网络,而是一个网络族,由一个参数(或可能更多)索引。这个参数可以随着时间的推移,或者随着一个人将焦点改变到不同的尺度而跟踪变化。在这个项目中,PI将开发分析工具和技术,提供有用的见解,但也可以有效地计算大型网络,即使在处理参数的许多值时。他们专注于网络分析文献中的几个感兴趣的指标,如中心性,枢纽和权威,良好的广播和良好的接收器的措施。对于更大的网络,这些度量的研究变得更加困难。发现网络重要特征的方法通常基于矩阵函数。其中两个是矩阵指数和预解式;这些可以通过连接节点的路径的加权和来测量节点之间的连通性,并且可以很容易地设计这些函数的修改以强调网络的某些特征。PI已经开发了近似计算和误差估计的方法,可以应用于广泛的矩阵函数。他们将调整和开发近似计算方法,并确定与项目设置相关的这些方法的误差估计。网络特征的一些量化涉及矩阵分解,如特征值或奇异值分解,而其他量化仅涉及简单的矩阵求和,如对角项或行和列和。PI将设计用于执行分解的方法,这些方法在参数接近时利用矩阵之间的接近性,以减少计算负担,并更好地跟踪随着参数变化而重要性上升或下降的分解部分。

项目成果

期刊论文数量(53)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A new representation of generalized averaged Gauss quadrature rules
广义平均高斯求积规则的新表示
  • DOI:
    10.1016/j.apnum.2020.11.016
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Reichel, Lothar;Spalević, Miodrag M.
  • 通讯作者:
    Spalević, Miodrag M.
Non-stationary Structure-Preserving Preconditioning for Image Restoration
Shifted extended global Lanczos processes for trace estimation with application to network analysis
转移扩展的全局 Lanczos 过程,用于跟踪估计并应用于网络分析
  • DOI:
    10.1007/s10092-020-00395-1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Bentbib, A. H.;El Ghomari, M.;Jbilou, K.;Reichel, L.
  • 通讯作者:
    Reichel, L.
Eigenvector sensitivity under general and structured perturbations of tridiagonal Toeplitz‐type matrices
三对角 Toeplitz 型矩阵的一般扰动和结构化扰动下的特征向量灵敏度
Chained graphs and some applications
  • DOI:
    10.1007/s41109-021-00377-4
  • 发表时间:
    2021-06-01
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Concas, Anna;Reichel, Lothar;Zhang, Yunzi
  • 通讯作者:
    Zhang, Yunzi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lothar Reichel其他文献

The ordering of tridiagonal matrices in the cyclic reduction method for Poisson's equation
  • DOI:
    10.1007/bf01409785
  • 发表时间:
    1989-02-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Lothar Reichel
  • 通讯作者:
    Lothar Reichel
New zero-finders for trust-region computations
  • DOI:
    10.1007/s11075-016-0260-2
  • 发表时间:
    2017-01-03
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Maged Alkilayh;Lothar Reichel;Jin Yun Yuan
  • 通讯作者:
    Jin Yun Yuan
An asymptotically orthonormal polynomial family
  • DOI:
    10.1007/bf01934921
  • 发表时间:
    1984-12-01
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Lothar Reichel
  • 通讯作者:
    Lothar Reichel
Workshop Approximation Methods and Fast Algorithms Hasenwinkel
研讨会近似方法和快速算法 Hasenwinkel
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ole Christensen;Lothar Reichel;Karla Rost
  • 通讯作者:
    Karla Rost
Averaged Nystr¨om interpolants for the solution of Fredholm integral equations of the second kind
第二类 Fredholm 积分方程解的平均 Nyström 插值
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Fermo;Lothar Reichel;Giuseppe Rodriguez;Miodrag M Spalevi´c
  • 通讯作者:
    Miodrag M Spalevi´c

Lothar Reichel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lothar Reichel', 18)}}的其他基金

Matrix Functions, Rational Approximation, and Quadrature with Applications
矩阵函数、有理逼近和求积及其应用
  • 批准号:
    1115385
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research on Quadrature and Orthogonal Polynomials in Large-Scale Computation
大规模计算中求积和正交多项式的协作研究
  • 批准号:
    0107858
  • 财政年份:
    2001
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research on Numerical Methods for Image Processing
图像处理数值方法的合作研究
  • 批准号:
    9806413
  • 财政年份:
    1998
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Computational Problems in Biomedical Engineering
生物医学工程中的计算问题
  • 批准号:
    9721436
  • 财政年份:
    1998
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Collaborative Research on Iterative Methods for Image Restoration
数学科学:图像恢复迭代方法的合作研究
  • 批准号:
    9404706
  • 财政年份:
    1995
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Polynomials Orthogonal on the Unit Circle in Numerical Analysis & Signal Processing
数值分析中单位圆正交多项式
  • 批准号:
    9296167
  • 财政年份:
    1992
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Iterative Methods for Large Linear Systems of Equations and Related Questions
大型线性方程组的迭代方法及相关问题
  • 批准号:
    9205531
  • 财政年份:
    1992
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Polynomials Orthogonal on the Unit Circle in Numerical Analysis & Signal Processing
数值分析中单位圆正交多项式
  • 批准号:
    9002884
  • 财政年份:
    1990
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: FMitF: Track I: Game Theoretic Updates for Network and Cloud Functions
合作研究:FMitF:第一轨:网络和云功能的博弈论更新
  • 批准号:
    2318970
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Minimally invasive brain network mapping for preserving brain functions and predicting plasticity
用于保留大脑功能和预测可塑性的微创大脑网络映射
  • 批准号:
    23KK0146
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
The Fbw7 ubiquitin ligase network: normal and neoplastic functions
Fbw7 泛素连接酶网络:正常和肿瘤功能
  • 批准号:
    10639893
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Distributed Placement of Virtual Network Functions in Edge Networks
边缘网络中虚拟网络功能的分布式放置
  • 批准号:
    22KJ1685
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Reaction robot with intimate photocatalytic and separation functions in a 3-D network driven by artificial intelligence
人工智能驱动的 3D 网络中具有紧密光催化和分离功能的反应机器人
  • 批准号:
    10041075
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    EU-Funded
Reaction robot with intimate photocatalytic and separation functions in a 3-D network driven by artificial intelligence (CATART)
由人工智能驱动的 3D 网络中具有紧密光催化和分离功能的反应机器人 (CATART)
  • 批准号:
    10032373
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    EU-Funded
Design of Low Entropy Polymer Network Materials for Unique Functions
具有独特功能的低熵聚合物网络材料的设计
  • 批准号:
    22K21342
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Leading Research )
Cracking the functions of layers in the primate frontoparietal saccade network
破解灵长类额顶扫视网络各层的功能
  • 批准号:
    460575
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Operating Grants
The individual and network functions of cell surface receptors in plant stress responses
植物胁迫反应中细胞表面受体的个体和网络功能
  • 批准号:
    RGPIN-2019-06395
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC/Ericsson Industrial Research Chair in Software-Defined Networking and Network Functions Virtualization Security: Compliance-Driven Monitoring, Detection, and Mitigation
NSERC/爱立信软件定义网络和网络功能虚拟化安全工业研究主席:合规驱动的监控、检测和缓解
  • 批准号:
    544869-2018
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Industrial Research Chairs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了