Computational Problems in Biomedical Engineering
生物医学工程中的计算问题
基本信息
- 批准号:9721436
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-01 至 1999-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The design of successful numerical methods for image processing and other biomedical applications require a thorough understanding of the underlying problems and of the desired solutions, as well as of the instrumentation for data collection and the computational environment. This proposal seeks support for the PI to spend his sabbatical year, and part of the summers attached to it at the Biomedical Engineering department at Case Western Reserve University. J. Duerk and D. Wilson will serve as hosts to the PI during his stay. A year of full time immersion in the biomedical environment at CWRU will give the PI an opportunity to strengthen and broaden his image processing knowledge and to view the field from the engineering perspective. He will also acquire significant insight in various biomedical engineering applications whose solution is computationally challenging. The PI's expertise on numerical methods for large-scale computations and the recent applications to the restoration of images will make it possible to begin interacting with faculty and students in the hosting department from the start, thus allowing him to take advantage of all learning opportunities. It is envisioned that this interaction will develop into a solid and fruitful cooperation on the development of better numerical methods for novel medical applications, e.g., interventional MRI for a new less invasive cancer treatment. The new knowledge and skills will significantly broaden the PI's expertise and will open new avenues for his future research. Upon returning to his home institution, where there is neither an engineering school nor a medical school, he will divulge his new knowledge of medical imaging and of the engineering perspective on it by directing the work of Masters and PhD students, designing new, interdisciplinary courses and giving a series of lectures and seminars. Upon return to his department the PI will be able to -introduce applications from biomedical enginee ring in graduate and undergraduate courses on numerical analysis and scientific computing -assign computational problems arising in biomedical engineering for Ph.D. and Masters theses, possibly in collaboration with members of the Department for Biomedical Engineering at CWRU. This should yield thesis topics that students would find interesting and attractive, as well as make the students more attractive on the job market -organize seminars on computational problems in biomedical engineering, and if there is interest, develop courses on "Computational Problems in Biomedical Engineering" -serve as liaison between his department and the Department of Biomedical Engineering at CWRU. This IGMS project is jointly supported by the MPS Office of Multidisciplinary Activities (OMA) and the Division of Mathematical Sciences (DMS).
用于图像处理和其他生物医学应用的成功数值方法的设计需要透彻理解根本问题和所需的解决方案,以及数据收集和计算环境的仪器。 该提案寻求支持 PI 在凯斯西储大学生物医学工程系度过休假年以及与之相关的部分暑假。 J. Duerk 和 D. Wilson 将在 PI 逗留期间接待他。 在 CWRU 的生物医学环境中全职沉浸一年将使 PI 有机会加强和拓宽他的图像处理知识,并从工程角度看待该领域。 他还将获得对各种生物医学工程应用的深刻见解,这些应用的解决方案在计算上具有挑战性。 PI 在大规模计算数值方法方面的专业知识以及最近在图像恢复方面的应用将使他能够从一开始就与托管部门的教师和学生进行互动,从而使他能够利用所有的学习机会。 预计这种互动将发展成为坚实而富有成效的合作,为新型医学应用开发更好的数值方法,例如用于新的微创癌症治疗的介入 MRI。 新的知识和技能将显着拓宽 PI 的专业知识,并为其未来的研究开辟新的途径。返回既没有工程学院也没有医学院的家乡后,他将通过指导硕士和博士生的工作、设计新的跨学科课程以及举办一系列讲座和研讨会,传播他在医学成像方面的新知识以及工程观点。 返回所在部门后,PI 将能够 - 在研究生和本科生的数值分析和科学计算课程中引入生物医学工程的应用 - 为博士生分配生物医学工程中出现的计算问题。和硕士学位论文,可能与 CWRU 生物医学工程系的成员合作。 这应该产生学生会感兴趣和有吸引力的论文主题,并使学生在就业市场上更具吸引力 - 组织生物医学工程中计算问题的研讨会,如果有兴趣,开发“生物医学工程中的计算问题”课程 - 作为他的部门和 CWRU 生物医学工程系之间的联络人。 该IGMS项目由公安部多学科活动办公室(OMA)和数学科学部(DMS)共同支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lothar Reichel其他文献
An asymptotically orthonormal polynomial family
- DOI:
10.1007/bf01934921 - 发表时间:
1984-12-01 - 期刊:
- 影响因子:1.700
- 作者:
Lothar Reichel - 通讯作者:
Lothar Reichel
New zero-finders for trust-region computations
- DOI:
10.1007/s11075-016-0260-2 - 发表时间:
2017-01-03 - 期刊:
- 影响因子:2.000
- 作者:
Maged Alkilayh;Lothar Reichel;Jin Yun Yuan - 通讯作者:
Jin Yun Yuan
The ordering of tridiagonal matrices in the cyclic reduction method for Poisson's equation
- DOI:
10.1007/bf01409785 - 发表时间:
1989-02-01 - 期刊:
- 影响因子:2.200
- 作者:
Lothar Reichel - 通讯作者:
Lothar Reichel
Workshop Approximation Methods and Fast Algorithms Hasenwinkel
研讨会近似方法和快速算法 Hasenwinkel
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Ole Christensen;Lothar Reichel;Karla Rost - 通讯作者:
Karla Rost
Averaged Nystr¨om interpolants for the solution of Fredholm integral equations of the second kind
第二类 Fredholm 积分方程解的平均 Nyström 插值
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
L. Fermo;Lothar Reichel;Giuseppe Rodriguez;Miodrag M Spalevi´c - 通讯作者:
Miodrag M Spalevi´c
Lothar Reichel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lothar Reichel', 18)}}的其他基金
Matrix Functions, Rational Approximation, and Quadrature with Applications
矩阵函数、有理逼近和求积及其应用
- 批准号:
1115385 - 财政年份:2011
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Collaborative Research on Quadrature and Orthogonal Polynomials in Large-Scale Computation
大规模计算中求积和正交多项式的协作研究
- 批准号:
0107858 - 财政年份:2001
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research on Numerical Methods for Image Processing
图像处理数值方法的合作研究
- 批准号:
9806413 - 财政年份:1998
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Collaborative Research on Iterative Methods for Image Restoration
数学科学:图像恢复迭代方法的合作研究
- 批准号:
9404706 - 财政年份:1995
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Polynomials Orthogonal on the Unit Circle in Numerical Analysis & Signal Processing
数值分析中单位圆正交多项式
- 批准号:
9296167 - 财政年份:1992
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Iterative Methods for Large Linear Systems of Equations and Related Questions
大型线性方程组的迭代方法及相关问题
- 批准号:
9205531 - 财政年份:1992
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Polynomials Orthogonal on the Unit Circle in Numerical Analysis & Signal Processing
数值分析中单位圆正交多项式
- 批准号:
9002884 - 财政年份:1990
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
相似海外基金
Tackling Big Data problems in biomedical sciences with extended similarity methods
使用扩展相似性方法解决生物医学科学中的大数据问题
- 批准号:
10713143 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Optimal design for inverse problems in biomedical engineering
生物医学工程反问题的优化设计
- 批准号:
2600792 - 财政年份:2021
- 资助金额:
$ 7.5万 - 项目类别:
Studentship
Stability issues in some biomedical, financial, and geophysical inverse problems
一些生物医学、金融和地球物理反问题中的稳定性问题
- 批准号:
2008154 - 财政年份:2020
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Symposium on Computational Modeling and Image Processing of Biomedical Problems
生物医学问题计算建模与图像处理研讨会
- 批准号:
1931844 - 财政年份:2019
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Optimal Design for Inverse Problems in Biomedical Engineering
生物医学工程反问题的优化设计
- 批准号:
2226719 - 财政年份:2019
- 资助金额:
$ 7.5万 - 项目类别:
Studentship
Inverse Problems for Biomedical Imaging and Homeland Security
生物医学成像和国土安全的反问题
- 批准号:
1816430 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
The Mathematical Modelling of Various Problems arising in the Biomedical Sciences
生物医学科学中出现的各种问题的数学建模
- 批准号:
RGPIN-2014-04772 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
Discovery Grants Program - Individual
Inverse Problems Arising in Novel Modalities of Biomedical Imaging
生物医学成像新模式中出现的逆问题
- 批准号:
1814592 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
The Mathematical Modelling of Various Problems arising in the Biomedical Sciences
生物医学科学中出现的各种问题的数学建模
- 批准号:
RGPIN-2014-04772 - 财政年份:2017
- 资助金额:
$ 7.5万 - 项目类别:
Discovery Grants Program - Individual
AF:Small: Novel Geometric Techniques for Several Biomedical Problems
AF:Small:解决多个生物医学问题的新颖几何技术
- 批准号:
1716400 - 财政年份:2017
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant