Collaborative Research on Quadrature and Orthogonal Polynomials in Large-Scale Computation
大规模计算中求积和正交多项式的协作研究
基本信息
- 批准号:0107858
- 负责人:
- 金额:$ 16.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-09-15 至 2005-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The inexpensive computation of upper and lower bounds for functionals of large, possibly sparse, symmetric matrices has received a lot of attention in the last few years. This proposal is concerned with new methods and new applications, and discusses extensions that allow the matrices to be nonsymmetric. The computation of upper and lower bounds for matrix functionals is based on the evaluation of pairs of Gauss-type quadrature rules. The outlined work proposes to study new quadrature rules of Gauss-type with properties which make them suitable for estimating matrix functional of nonsymmetric matrices. The measure associated with these quadrature rules may be indefinite or complex valued. Applications of these quadrature rules to the estimation of the norm of the error in the approximate solutions determined by iterative methods for linear systems of equations with nonsymmetric matrices will be pursued. Furthermore, applications to the iterative solutions of nonlinear problems will also be studied. An important aspect of scientific computations addresses the reliability of the results. In particular, it is important to know the accuracy, measured by the error, of a computed result. One class of problems ubiquitous in scientific computing is the solution of large systems of algebraic equations. Since the solution of these kinds are equations is so widespread, they represent a class of problems for which knowledge of the numerical accuracy of the results is of great importance. This project addresses the issue by developing theory for computing the upper and lower bounds for certain measures of a system of equations. One particular application is to get the upper and lower bounds on the accuracy of approximate solutions of large systems of equations.
在过去的几年里,大的,可能是稀疏的,对称矩阵的泛函的上界和下界的廉价计算受到了很多关注。这个建议关注新的方法和新的应用,并讨论了扩展,允许矩阵是非对称的。矩阵泛函的上界和下界的计算是基于对高斯型求积规则的评估。概述的工作提出了研究新的高斯型求积规则的性质,使它们适合于估计非对称矩阵的矩阵泛函。与这些求积规则相关联的度量可以是不定值或复值的。这些正交规则的应用程序,以估计的误差在近似解的线性方程组与非对称矩阵的迭代方法确定的范数将被追求。此外,还将研究非线性问题的迭代解的应用。科学计算的一个重要方面是结果的可靠性。特别是,重要的是要知道计算结果的精度,由误差来衡量。科学计算中普遍存在的一类问题是大型代数方程组的求解。由于这类方程的解是如此广泛,它们代表了一类问题,对于这类问题,结果的数值精度的知识是非常重要的。这个项目通过发展计算方程系统的某些测量的上界和下界的理论来解决这个问题。一个特殊的应用是得到上界和下界的精度近似解的大型系统的方程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lothar Reichel其他文献
An asymptotically orthonormal polynomial family
- DOI:
10.1007/bf01934921 - 发表时间:
1984-12-01 - 期刊:
- 影响因子:1.700
- 作者:
Lothar Reichel - 通讯作者:
Lothar Reichel
New zero-finders for trust-region computations
- DOI:
10.1007/s11075-016-0260-2 - 发表时间:
2017-01-03 - 期刊:
- 影响因子:2.000
- 作者:
Maged Alkilayh;Lothar Reichel;Jin Yun Yuan - 通讯作者:
Jin Yun Yuan
The ordering of tridiagonal matrices in the cyclic reduction method for Poisson's equation
- DOI:
10.1007/bf01409785 - 发表时间:
1989-02-01 - 期刊:
- 影响因子:2.200
- 作者:
Lothar Reichel - 通讯作者:
Lothar Reichel
Workshop Approximation Methods and Fast Algorithms Hasenwinkel
研讨会近似方法和快速算法 Hasenwinkel
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Ole Christensen;Lothar Reichel;Karla Rost - 通讯作者:
Karla Rost
Averaged Nystr¨om interpolants for the solution of Fredholm integral equations of the second kind
第二类 Fredholm 积分方程解的平均 Nyström 插值
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
L. Fermo;Lothar Reichel;Giuseppe Rodriguez;Miodrag M Spalevi´c - 通讯作者:
Miodrag M Spalevi´c
Lothar Reichel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lothar Reichel', 18)}}的其他基金
Matrix Functions, Rational Approximation, and Quadrature with Applications
矩阵函数、有理逼近和求积及其应用
- 批准号:
1115385 - 财政年份:2011
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Collaborative Research on Numerical Methods for Image Processing
图像处理数值方法的合作研究
- 批准号:
9806413 - 财政年份:1998
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Computational Problems in Biomedical Engineering
生物医学工程中的计算问题
- 批准号:
9721436 - 财政年份:1998
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Collaborative Research on Iterative Methods for Image Restoration
数学科学:图像恢复迭代方法的合作研究
- 批准号:
9404706 - 财政年份:1995
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Polynomials Orthogonal on the Unit Circle in Numerical Analysis & Signal Processing
数值分析中单位圆正交多项式
- 批准号:
9296167 - 财政年份:1992
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Iterative Methods for Large Linear Systems of Equations and Related Questions
大型线性方程组的迭代方法及相关问题
- 批准号:
9205531 - 财政年份:1992
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Polynomials Orthogonal on the Unit Circle in Numerical Analysis & Signal Processing
数值分析中单位圆正交多项式
- 批准号:
9002884 - 财政年份:1990
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 16.2万 - 项目类别:
Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
- 批准号:
502555 - 财政年份:2024
- 资助金额:
$ 16.2万 - 项目类别:
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
- 批准号:
DE240100161 - 财政年份:2024
- 资助金额:
$ 16.2万 - 项目类别:
Discovery Early Career Researcher Award
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
- 批准号:
2902365 - 财政年份:2024
- 资助金额:
$ 16.2万 - 项目类别:
Studentship
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
- 批准号:
EP/Y031962/1 - 财政年份:2024
- 资助金额:
$ 16.2万 - 项目类别:
Research Grant
FCEO-UKRI Senior Research Fellowship - conflict
FCEO-UKRI 高级研究奖学金 - 冲突
- 批准号:
EP/Y033124/1 - 财政年份:2024
- 资助金额:
$ 16.2万 - 项目类别:
Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
- 批准号:
EP/Y033183/1 - 财政年份:2024
- 资助金额:
$ 16.2万 - 项目类别:
Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
- 批准号:
NE/Y005457/1 - 财政年份:2024
- 资助金额:
$ 16.2万 - 项目类别:
Training Grant