Chaotic Process Simulation

混沌过程模拟

基本信息

  • 批准号:
    9007854
  • 负责人:
  • 金额:
    $ 20.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1990
  • 资助国家:
    美国
  • 起止时间:
    1990-10-15 至 1994-09-30
  • 项目状态:
    已结题

项目摘要

The first step in chemical process design is simulation of the systems, whether they be individual units (such as reactors, heat exchangers, distillation columns, etc.), groups of units, or sometimes the whole plant. These simulations yield equations which are usually nonlinear, and numerical methods of varying complexity have been devised to solve them. Such methods usually begin with some initial educated guess of the unknown parameters and then some iterative method using the equations of the physical system is used to improve these values, such as direct substitution, accelerated direct substitution, various Newton-like methods, etc. These are called fixed-point methods. This research is concerned with building an understanding of: (1) the fundamentals of the chaotic (such as period doubling, period tripling, strange attractors, etc.) behavior of fixed-point methods for steady- state process simulation, and (2) the relationship between the chaotic behavior of fixed-point methods for the steady-state simulation of processes and the chaotic behavior of processes as nonlinear, dynamical systems. Specific tasks under these two areas of work are as follows. To build a better understanding of chaos the PIs will: (a) conduct a numerical investigation and study of the practical implication of the geometric (or topological) structure (i.e., basins of attraction, basin boundaries, Julia sets, the Mandelbrot set, etc.) in the complex domain, (b) study the qualitative effects of stabilization procedures (i.e., step bounding, trust regions, continuation) on geometric structure, and auxiliary implications regarding automatic initialization procedures, and (c) use established and/or develop new analysis tools (from differential topology and geometry) to build a fundamental theoretical understanding and classification of routes to chaos that are relevant to process simulation. To determine if there is an observable signature(s) of the chaotic evolution of unsteady-state processes that manifests itself in the steady-state equation solving task they will: (a) conduct parallel steady- and unsteady-state numerical experiments in the complex domain to determine if signatures of chaotic process dynamics are present in the associated steady-state equation-solving task, and if so, determine the intrinsic properties of those signatures, (b) study the relationship between the geometric structure (i.e., basins of attraction, basin boundaries, Julia sets, etc.) associated with the chaotic behavior of fixed- point methods for steady-state simulation and the geometric structure associated with the chaotic evolution of unsteady- state chemical processes, and (c) build a fundamental theoretical understanding of the signature process in an effort to characterize the chaotic time evolution of chemical processes directly from steady-state models. All of their calculations will be in the complex domain.
化工过程设计的第一步是模拟 系统,无论它们是单独的单元(如反应堆, 热交换器、蒸馏塔等),单元组, 有时甚至是整株植物 这些模拟产生 通常是非线性的方程和数值方法 不同复杂程度的人都被设计出来解决这些问题。 等 方法通常开始与一些初步的受过教育的猜测, 未知参数,然后使用一些迭代方法, 方程的物理系统是用来改善这些 值,如直接替代,加速直接 替代,各种类似牛顿的方法,等等。这些是 称为定点方法。 这项研究关注的是 (1)理解:(1)基本原则 混沌(如周期加倍、周期三倍、奇异 吸引子等)固定点方法的性能稳定, 状态过程模拟,以及(2) 定常不动点方法的混沌行为 过程的模拟和过程的混沌行为 非线性动力系统。 这两个工作范畴的具体工作如下。 为了更好地理解混沌,PI将:(a) 进行数值调查和研究的实际 几何(或拓扑)结构的含义(即, 吸引盆地,盆地边界,Julia集, Mandelbrot集等)在复域中,(B)研究 稳定过程的定性效果(即,步骤 边界、信赖区域、延续)上的几何结构, 以及关于自动初始化的辅助含义 (c)使用现有的和/或开发新的 分析工具(从微分拓扑和几何), 建立基本的理论认识, 与过程相关的通向混沌的路径分类 仿真 为了确定是否有一个可观察的 非稳态混沌演化特征 在稳态方程中表现出来的过程 解决任务,他们将:(一)进行平行稳定-和 非稳态数值实验在复杂的域, 确定混沌过程动态的特征是否 存在于相关的稳态方程求解任务中, 如果是这样,确定那些 签名,(B)研究几何之间的关系 结构(即,吸引力盆地,盆地边界,朱莉娅 套等)与固定的混沌行为有关, 稳态模拟的点法和几何 结构与混沌演化的非定常- 国家化学过程,(c)建立一个基本的 在理论上理解的签名过程中, 描述化学物质的混沌时间演化的努力 直接从稳态模型中进行处理。 他们所有的 计算将在复数域中进行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Angelo Lucia其他文献

Metabolic pathway analysis using a nash equilibrium approach
  • DOI:
    10.1007/s10898-018-0605-6
  • 发表时间:
    2018-01-18
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Angelo Lucia;Peter A. DiMaggio;Diego Alonso-Martinez
  • 通讯作者:
    Diego Alonso-Martinez
Multiphase equilibrium flash with salt precipitation in systems with multiple salts
  • DOI:
    10.1016/j.cherd.2014.04.034
  • 发表时间:
    2015-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Angelo Lucia;Heath Henley;Edward Thomas
  • 通讯作者:
    Edward Thomas
Non-pinched, minimum energy distillation designs
  • DOI:
    10.1016/j.cherd.2008.02.017
  • 发表时间:
    2008-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Amit S. Amale;Angelo Lucia
  • 通讯作者:
    Angelo Lucia
More process simulation in singular regions
  • DOI:
    10.1016/s0098-1354(99)80090-8
  • 发表时间:
    1999-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Angelo Lucia;Delong Liu
  • 通讯作者:
    Delong Liu
Metabolic perturbation studies using a Nash Equilibrium model of liver machine perfusion: modeling oxidative stress and effect of glutathione supplementation
使用肝脏机器灌注纳什平衡模型进行代谢扰动研究:模拟氧化应激和补充谷胱甘肽的效果

Angelo Lucia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Angelo Lucia', 18)}}的其他基金

I-Corps: Energy Efficient Process Design Alternatives
I-Corps:节能工艺设计替代方案
  • 批准号:
    1650651
  • 财政年份:
    2016
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Standard Grant
A New Approach to the Design and Optimization of Energy Efficient Chemical Processes
节能化学工艺设计和优化的新方法
  • 批准号:
    0624889
  • 财政年份:
    2006
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Continuing Grant
Global Terrain Methods for Chemical Process Simulation
用于化学过程模拟的全局地形方法
  • 批准号:
    0113091
  • 财政年份:
    2001
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Standard Grant
Chemical Process Simulation in Singular Regions
奇异区域的化学过程模拟
  • 批准号:
    9818130
  • 财政年份:
    1999
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Standard Grant
Nonconvexity in Chemical Process Optimization
化学工艺优化中的非凸性
  • 批准号:
    9696120
  • 财政年份:
    1995
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Continuing Grant
Feasibility in Chemical Process Design and Simulation
化学工艺设计和模拟的可行性
  • 批准号:
    9696121
  • 财政年份:
    1995
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Continuing Grant
Feasibility in Chemical Process Design and Simulation
化学工艺设计和模拟的可行性
  • 批准号:
    9409158
  • 财政年份:
    1994
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Continuing Grant
Nonconvexity in Chemical Process Optimization
化学工艺优化中的非凸性
  • 批准号:
    9312066
  • 财政年份:
    1994
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Continuing Grant
Issues in Local Chemical Process Optimization
当地化学工艺优化的问题
  • 批准号:
    8922316
  • 财政年份:
    1990
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Continuing Grant
Travel to 11th IMACS World Congress on System Simulation and Scientific Computation, August 5-9, l985, Oslo, Norway
前往参加 1985 年 8 月 5 日至 9 日在挪威奥斯陆举行的第 11 届 IMACS 世界系统仿真和科学计算大会
  • 批准号:
    8508023
  • 财政年份:
    1985
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Standard Grant

相似国自然基金

Neural Process模型的多样化高保真技术研究
  • 批准号:
    62306326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
磁转动超新星爆发中weak r-process的关键核反应
  • 批准号:
    12375145
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
多臂Bandit process中的Bayes非参数方法
  • 批准号:
    71771089
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

ERI: Unraveling Multi-Phase Ink Shear-Thinning Flow Mechanism in Direct Ink Writing Process: Computational Fluid Dynamics Simulation and In-Situ Experimental Verification
ERI:揭示直接墨水书写过程中的多相墨水剪切稀化流动机制:计算流体动力学模拟和原位实验验证
  • 批准号:
    2347497
  • 财政年份:
    2024
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Standard Grant
Optimisation of a vibro-packing process through simulation and experiment
通过模拟和实验优化振动包装工艺
  • 批准号:
    2889985
  • 财政年份:
    2023
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Studentship
Multiscale Simulation of Local Mass Transfer in Gas-Liquid Flows - Expanding the Toolbox for Advanced Process Equipment Design
气液流局部传质的多尺度模拟 - 扩展先进工艺设备设计的工具箱
  • 批准号:
    RGPIN-2022-03189
  • 财政年份:
    2022
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Discovery Grants Program - Individual
SBIR Phase I: Machine learning-powered simulation of additive manufacturing for real-time design and process optimization
SBIR 第一阶段:基于机器学习的增材制造仿真,用于实时设计和流程优化
  • 批准号:
    2151667
  • 财政年份:
    2022
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Standard Grant
Multiscale Simulation of Local Mass Transfer in Gas-Liquid Flows - Expanding the Toolbox for Advanced Process Equipment Design
气液流局部传质的多尺度模拟 - 扩展先进工艺设备设计的工具箱
  • 批准号:
    RGPIN-2022-03189
  • 财政年份:
    2022
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Discovery Grants Program - Individual
Integrating the statistical investigation process, data visualization, and simulation into high school statistics
将统计调查过程、数据可视化和模拟整合到高中统计中
  • 批准号:
    2201121
  • 财政年份:
    2022
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Standard Grant
Process Simulation of Thermoplastic Composite Continuous Resistance Welding
热塑性复合材料连续电阻焊工艺模拟
  • 批准号:
    576452-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Next Generation Machining Simulation Technologies for Complete and Efficient Process Validation
用于完整、高效工艺验证的下一代加工仿真技术
  • 批准号:
    RGPIN-2020-06402
  • 财政年份:
    2022
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Discovery Grants Program - Individual
Process study, simulation, and optimization of the direct conversion of biomass to ethyl levulinate
生物质直接转化为乙酰丙酸乙酯的工艺研究、模拟和优化
  • 批准号:
    575966-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Next Generation Machining Simulation Technologies for Complete and Efficient Process Validation
用于完整、高效工艺验证的下一代加工仿真技术
  • 批准号:
    RGPIN-2020-06402
  • 财政年份:
    2021
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了