Global Terrain Methods for Chemical Process Simulation
用于化学过程模拟的全局地形方法
基本信息
- 批准号:0113091
- 负责人:
- 金额:$ 19.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-09-01 至 2005-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTPI: Angelo Lucia Institution: University of Rhode IslandProposal Number: 0113091The aim of this research is to find all relevant solutions and singular points to physical models by dynamically uncovering the essential features of the terrain of the least-squares function. The central idea comes from finding intelligent ways of moving both up and down the landscape of the least-squares function. The foundation of the research rests on following fundamental observations:Stationary points are smoothly connected under twice continuous differentiability;Valleys, ridges, ledges, etc., provide a natural and useful characterization of this connectedness;Valleys, ridges, etc., can be characterized as a collection of constrained minima over a set of level curves; andThe natural flow of Newton-like vector fields tends to be along these distinct features of the landscape.These observations and conjectures are illustrated using both chemical engineering models and mathematical benchmarks.The methodology based on exploiting these observations results in algorithms called Global Terrain Algorithms (GTA) and consist of successive sequences of downhill (i.e., equation-solving computations) and uphill movements (i.e., predictor-corrector calculations). Downhill movement to either a singular point or solution is established using reliable, norm-reducing (complex domain) trust region methods. Uphill movement, on the other hand, is necessarily to a singular point and uses uphill Newton-like predictor steps combined with intermittent corrector steps defined in terms of neighboring extrema in the gradient norm on the current level set for the least-squares function. Initial starting points are arbitrary while starting points for subsequent subproblems defining movement from one stationary point to another are along appropriately determined eigenvectors. These eigenvectors are calculated or approximated, provide knowledge about valleys, ridges, ledges, etc., give good initiations for further downhill or uphill movement, and can be considered a generalization of the eigendecomposition (or saddle point theory) of Sridhar and Lucia. Collisions with boundaries of the feasible region and severed valleys and ridges are also considered. As the connectedness of stationary points unfolds during problem-solving, limited connectedness is revealed and used to define the termination criterion for the GTA. Similar ideas are applicable to chemical process optimization be replacing the least-squares function with some other objective function.
摘要:机构:罗德岛大学提案编号:0113091本研究的目的是通过动态地揭示地形的最小二乘函数的本质特征来找到物理模型的所有相关解和奇异点。 中心思想来自于寻找智能的方法来上下移动最小二乘函数的景观。 研究的基础在于以下基本观察:驻点在两次连续可微下光滑连通;谷、脊、壁架等,为这种连通性提供了一个自然和有用的特征;山谷,山脊等,可以表征为一组水平曲线上的约束最小值的集合;牛顿矢量场的自然流动倾向于沿着这些独特的地形特征。这些观测和构造使用化学工程模型和数学基准来说明。基于利用这些观测结果的方法学被称为全局地形算法(GTA)。并且由连续的下坡序列组成(即,方程求解计算)和上坡运动(即,预测-校正计算)。 下坡运动到奇点或解决方案是建立使用可靠的,规范减少(复域)的信赖域方法。 另一方面,上坡运动必然是一个奇异点,并使用上坡牛顿式预测步骤结合间歇性校正步骤定义的相邻极值的梯度范数在当前水平集的最小二乘函数。 初始起始点是任意的,而定义从一个静止点到另一个静止点的运动的后续子问题的起始点是沿着适当确定的特征向量。 这些特征向量被计算或近似,提供关于谷、脊、壁架等的知识,为进一步的下坡或上坡运动提供良好的初始化,并且可以被认为是Sridhar和Lucia的特征分解(或鞍点理论)的推广。 碰撞的可行区域和切断的山谷和山脊的边界也被认为是。 由于不动点的连通性在问题求解过程中展开,有限的连通性被揭示出来,并被用来定义GTA的终止准则。 类似的思想也适用于化工过程优化,即用其他目标函数代替最小二乘函数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Angelo Lucia其他文献
Metabolic pathway analysis using a nash equilibrium approach
- DOI:
10.1007/s10898-018-0605-6 - 发表时间:
2018-01-18 - 期刊:
- 影响因子:1.700
- 作者:
Angelo Lucia;Peter A. DiMaggio;Diego Alonso-Martinez - 通讯作者:
Diego Alonso-Martinez
Multiphase equilibrium flash with salt precipitation in systems with multiple salts
- DOI:
10.1016/j.cherd.2014.04.034 - 发表时间:
2015-01-01 - 期刊:
- 影响因子:
- 作者:
Angelo Lucia;Heath Henley;Edward Thomas - 通讯作者:
Edward Thomas
Non-pinched, minimum energy distillation designs
- DOI:
10.1016/j.cherd.2008.02.017 - 发表时间:
2008-08-01 - 期刊:
- 影响因子:
- 作者:
Amit S. Amale;Angelo Lucia - 通讯作者:
Angelo Lucia
More process simulation in singular regions
- DOI:
10.1016/s0098-1354(99)80090-8 - 发表时间:
1999-06-01 - 期刊:
- 影响因子:
- 作者:
Angelo Lucia;Delong Liu - 通讯作者:
Delong Liu
Metabolic perturbation studies using a Nash Equilibrium model of liver machine perfusion: modeling oxidative stress and effect of glutathione supplementation
使用肝脏机器灌注纳什平衡模型进行代谢扰动研究:模拟氧化应激和补充谷胱甘肽的效果
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Angelo Lucia;K. Uygun - 通讯作者:
K. Uygun
Angelo Lucia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Angelo Lucia', 18)}}的其他基金
I-Corps: Energy Efficient Process Design Alternatives
I-Corps:节能工艺设计替代方案
- 批准号:
1650651 - 财政年份:2016
- 资助金额:
$ 19.84万 - 项目类别:
Standard Grant
A New Approach to the Design and Optimization of Energy Efficient Chemical Processes
节能化学工艺设计和优化的新方法
- 批准号:
0624889 - 财政年份:2006
- 资助金额:
$ 19.84万 - 项目类别:
Continuing Grant
Chemical Process Simulation in Singular Regions
奇异区域的化学过程模拟
- 批准号:
9818130 - 财政年份:1999
- 资助金额:
$ 19.84万 - 项目类别:
Standard Grant
Nonconvexity in Chemical Process Optimization
化学工艺优化中的非凸性
- 批准号:
9696120 - 财政年份:1995
- 资助金额:
$ 19.84万 - 项目类别:
Continuing Grant
Feasibility in Chemical Process Design and Simulation
化学工艺设计和模拟的可行性
- 批准号:
9696121 - 财政年份:1995
- 资助金额:
$ 19.84万 - 项目类别:
Continuing Grant
Nonconvexity in Chemical Process Optimization
化学工艺优化中的非凸性
- 批准号:
9312066 - 财政年份:1994
- 资助金额:
$ 19.84万 - 项目类别:
Continuing Grant
Feasibility in Chemical Process Design and Simulation
化学工艺设计和模拟的可行性
- 批准号:
9409158 - 财政年份:1994
- 资助金额:
$ 19.84万 - 项目类别:
Continuing Grant
Issues in Local Chemical Process Optimization
当地化学工艺优化的问题
- 批准号:
8922316 - 财政年份:1990
- 资助金额:
$ 19.84万 - 项目类别:
Continuing Grant
Travel to 11th IMACS World Congress on System Simulation and Scientific Computation, August 5-9, l985, Oslo, Norway
前往参加 1985 年 8 月 5 日至 9 日在挪威奥斯陆举行的第 11 届 IMACS 世界系统仿真和科学计算大会
- 批准号:
8508023 - 财政年份:1985
- 资助金额:
$ 19.84万 - 项目类别:
Standard Grant
相似海外基金
Postdoctoral Fellowship: EAR-PF: How Does Critical Zone Water Storage Impact Forest Drought Stress Across Complex Terrain?
博士后奖学金:EAR-PF:关键区域蓄水如何影响复杂地形的森林干旱胁迫?
- 批准号:
2305616 - 财政年份:2024
- 资助金额:
$ 19.84万 - 项目类别:
Fellowship Award
Development of a Physics-Data Driven Surface Flux Parameterization for Flow in Complex Terrain
开发物理数据驱动的复杂地形流动表面通量参数化
- 批准号:
2336002 - 财政年份:2024
- 资助金额:
$ 19.84万 - 项目类别:
Continuing Grant
I-Corps: Advanced All-Terrain Robot Navigating Cluttered Environments with Tensegrity-Based Locomotion
I-Corps:先进的全地形机器人通过基于张拉整体的运动在杂乱的环境中导航
- 批准号:
2337430 - 财政年份:2023
- 资助金额:
$ 19.84万 - 项目类别:
Standard Grant
Exploration Path Planning for Radiation Source Localization on Rough Terrain
崎岖地形辐射源定位探测路径规划
- 批准号:
23K13295 - 财政年份:2023
- 资助金额:
$ 19.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Maneuvering over Deformable Terrain: Long-horizon Task and Motion Planning of Bipedal Locomotion via Contact Sensing and Terrain Adaptation
在可变形地形上操纵:通过接触传感和地形适应进行双足运动的长视野任务和运动规划
- 批准号:
2328254 - 财政年份:2023
- 资助金额:
$ 19.84万 - 项目类别:
Standard Grant
EAGER: A Comprehensive Approach for Generating, Sharing, Searching, and Using High-Resolution Terrain Parameters
EAGER:生成、共享、搜索和使用高分辨率地形参数的综合方法
- 批准号:
2334945 - 财政年份:2023
- 资助金额:
$ 19.84万 - 项目类别:
Standard Grant
Mechanical Intelligence of Locomotion and Intrusion in Slender Organisms in Terradynamically Rich Terrain
地动力丰富地形中细长生物体运动和入侵的机械智能
- 批准号:
2310751 - 财政年份:2023
- 资助金额:
$ 19.84万 - 项目类别:
Standard Grant
I-Corps: Advancing access equity and user safety through bio-inspired all-terrain mobility solutions
I-Corps:通过仿生全地形移动解决方案促进准入公平和用户安全
- 批准号:
2330074 - 财政年份:2023
- 资助金额:
$ 19.84万 - 项目类别:
Standard Grant
Plateformes pour l'étude terrain de systèmes multirobots robustes
多机器人稳健地形系统平台
- 批准号:
RTI-2023-00559 - 财政年份:2022
- 资助金额:
$ 19.84万 - 项目类别:
Research Tools and Instruments
Multiscale numerical modelling of high-buoyancy plumes in complex terrain
复杂地形高浮力羽流的多尺度数值模拟
- 批准号:
567595-2022 - 财政年份:2022
- 资助金额:
$ 19.84万 - 项目类别:
Postdoctoral Fellowships