Nonconvexity in Chemical Process Optimization

化学工艺优化中的非凸性

基本信息

  • 批准号:
    9312066
  • 负责人:
  • 金额:
    $ 9.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1994
  • 资助国家:
    美国
  • 起止时间:
    1994-02-01 至 1996-07-31
  • 项目状态:
    已结题

项目摘要

Abstract - Lucia - 9312066 Theoretically sound and reasonably reliable and efficient computer tools for finding local solutions to large chemical process optimization problems have been the focus of this PI's research. He has been working on developing a successive quadratic programming (SQP) method for nonlinearly constrained optimizations problems (an example of such problems are the design of separation units such as distillation columns). SQP methods are a very powerful class of methods for solving nonlinear programming problems, particularly those with strong nonlinear constraints. The single biggest weakness of SQP methods is the fact that iterative QP solutions can give directions of nondescent in the nonlinear program (NLP), even for convex quadratic programs. For this research project the PI plans to: A) Develop the theoretical framework for linear programming-based, asymmetric trust region methods that guarantee descent when the quadratic programming solution is not a descent direction. B) Conduct concomitant numerical studies directed at developing the necessary rules for adjusting the trust region size to guarantee both descent and convergence to a local Kuhn-Tucker point. C) Study the theoretical and computational implications of saddlepoint solutions to nonlinear programming algorithms. In addition, he plans to look at the general role of nonconvexity in quadratic programming by: 1) Conducting a numerical investigation and study of the relationship between nonconvexity and the inadequacy of current active set methods, the occurrence of constraint redundancy, the presence of multiplicity, nondescent, the requirement of starting point feasibility/infeasibility, projected definiteness, indefiniteness, and projected singularity. 2) Developing, in parallel, reliable and efficient algorithms that address these and other issues, including (a) new active set methods capable of handling projected indefiniteness with feasible or infeasible starting points, (b) preprocessing a lgorithms that can identify all smallest nontrivial redundant subsets of a given set of constrains, and (c) incorporating (b) into (a) when singularity is encountered. 3) Establishing theoretical foundations to both guide and support the algorithmic developments in 2) above.
摘要- Lucia - 9312066 理论上合理可靠和有效的计算机工具,寻找本地解决大型化工过程优化问题一直是这个PI的研究重点。 他一直致力于开发一种连续二次规划(SQP)方法,用于非线性约束优化问题(此类问题的一个例子是分离单元的设计,如蒸馏塔)。 SQP方法是求解非线性规划问题的一类非常强大的方法,特别是那些具有强非线性约束的问题。 SQP方法的最大缺点是迭代QP解可以给出非线性规划(NLP)的非下降方向,即使是凸二次规划。 对于本研究项目,PI计划:A)开发基于线性规划的非对称信赖域方法的理论框架,该方法在二次规划解不是下降方向时保证下降。 B)进行伴随的数值研究,旨在发展必要的规则来调整信赖域的大小,以保证下降和收敛到局部库恩-塔克点。 C)研究非线性规划算法鞍点解的理论和计算含义。 此外,他计划看看一般作用的非凸性在二次规划:1)进行数值调查和研究之间的关系非凸性和不足的现行活动集方法,发生的约束冗余,存在的多重性,非下降,要求的起点可行性/不可行性,预计明确性,不确定性,和预计奇异性。 2)并行开发解决这些问题和其他问题的可靠和有效的算法,包括(a)能够处理具有可行或不可行起点的投影不确定性的新的活动集方法,(B)预处理可以识别给定约束集合的所有最小非平凡冗余子集的ltax,以及(c)当遇到奇点时将(B)合并到(a)中。 3)建立理论基础,指导和支持上述2)中的算法开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Angelo Lucia其他文献

Metabolic pathway analysis using a nash equilibrium approach
  • DOI:
    10.1007/s10898-018-0605-6
  • 发表时间:
    2018-01-18
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Angelo Lucia;Peter A. DiMaggio;Diego Alonso-Martinez
  • 通讯作者:
    Diego Alonso-Martinez
Multiphase equilibrium flash with salt precipitation in systems with multiple salts
  • DOI:
    10.1016/j.cherd.2014.04.034
  • 发表时间:
    2015-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Angelo Lucia;Heath Henley;Edward Thomas
  • 通讯作者:
    Edward Thomas
Non-pinched, minimum energy distillation designs
  • DOI:
    10.1016/j.cherd.2008.02.017
  • 发表时间:
    2008-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Amit S. Amale;Angelo Lucia
  • 通讯作者:
    Angelo Lucia
More process simulation in singular regions
  • DOI:
    10.1016/s0098-1354(99)80090-8
  • 发表时间:
    1999-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Angelo Lucia;Delong Liu
  • 通讯作者:
    Delong Liu
Metabolic perturbation studies using a Nash Equilibrium model of liver machine perfusion: modeling oxidative stress and effect of glutathione supplementation
使用肝脏机器灌注纳什平衡模型进行代谢扰动研究:模拟氧化应激和补充谷胱甘肽的效果

Angelo Lucia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Angelo Lucia', 18)}}的其他基金

I-Corps: Energy Efficient Process Design Alternatives
I-Corps:节能工艺设计替代方案
  • 批准号:
    1650651
  • 财政年份:
    2016
  • 资助金额:
    $ 9.71万
  • 项目类别:
    Standard Grant
A New Approach to the Design and Optimization of Energy Efficient Chemical Processes
节能化学工艺设计和优化的新方法
  • 批准号:
    0624889
  • 财政年份:
    2006
  • 资助金额:
    $ 9.71万
  • 项目类别:
    Continuing Grant
Global Terrain Methods for Chemical Process Simulation
用于化学过程模拟的全局地形方法
  • 批准号:
    0113091
  • 财政年份:
    2001
  • 资助金额:
    $ 9.71万
  • 项目类别:
    Standard Grant
Chemical Process Simulation in Singular Regions
奇异区域的化学过程模拟
  • 批准号:
    9818130
  • 财政年份:
    1999
  • 资助金额:
    $ 9.71万
  • 项目类别:
    Standard Grant
Nonconvexity in Chemical Process Optimization
化学工艺优化中的非凸性
  • 批准号:
    9696120
  • 财政年份:
    1995
  • 资助金额:
    $ 9.71万
  • 项目类别:
    Continuing Grant
Feasibility in Chemical Process Design and Simulation
化学工艺设计和模拟的可行性
  • 批准号:
    9696121
  • 财政年份:
    1995
  • 资助金额:
    $ 9.71万
  • 项目类别:
    Continuing Grant
Feasibility in Chemical Process Design and Simulation
化学工艺设计和模拟的可行性
  • 批准号:
    9409158
  • 财政年份:
    1994
  • 资助金额:
    $ 9.71万
  • 项目类别:
    Continuing Grant
Chaotic Process Simulation
混沌过程模拟
  • 批准号:
    9007854
  • 财政年份:
    1990
  • 资助金额:
    $ 9.71万
  • 项目类别:
    Continuing Grant
Issues in Local Chemical Process Optimization
当地化学工艺优化的问题
  • 批准号:
    8922316
  • 财政年份:
    1990
  • 资助金额:
    $ 9.71万
  • 项目类别:
    Continuing Grant
Travel to 11th IMACS World Congress on System Simulation and Scientific Computation, August 5-9, l985, Oslo, Norway
前往参加 1985 年 8 月 5 日至 9 日在挪威奥斯陆举行的第 11 届 IMACS 世界系统仿真和科学计算大会
  • 批准号:
    8508023
  • 财政年份:
    1985
  • 资助金额:
    $ 9.71万
  • 项目类别:
    Standard Grant

相似国自然基金

Chinese Journal of Chemical Engineering
  • 批准号:
    21224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21024805
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Development of Fabrication Process for Hard Ceramic Coatings in Liquid Phase Based on Chemical Equilibrium Theory and Their Structural Control
基于化学平衡理论的液相硬质陶瓷涂层制备工艺及其结构控制研究
  • 批准号:
    23K04433
  • 财政年份:
    2023
  • 资助金额:
    $ 9.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computer Vision Methods for Enhanced Understanding of Mixing Phenomena and Object Tracking in Process-scale Chemical Reactions
用于增强对过程规模化学反应中混合现象和对象跟踪的理解的计算机视觉方法
  • 批准号:
    2889116
  • 财政年份:
    2023
  • 资助金额:
    $ 9.71万
  • 项目类别:
    Studentship
Development of a regional meteorological chemical isotopic model and understanding of the formation process of urban heavy rainfall
区域气象化学同位素模型建立及城市强降雨形成过程认识
  • 批准号:
    22KJ0385
  • 财政年份:
    2023
  • 资助金额:
    $ 9.71万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CircuPlast - A Green Chemical Recycling Process for PET
CircuPlast - PET 的绿色化学回收工艺
  • 批准号:
    10057937
  • 财政年份:
    2023
  • 资助金额:
    $ 9.71万
  • 项目类别:
    Collaborative R&D
Automatic extraction of chemical reaction process information from papers and its utilization
论文中化学反应过程信息的自动提取及其利用
  • 批准号:
    23K18500
  • 财政年份:
    2023
  • 资助金额:
    $ 9.71万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Chemical multiscale thermodynamics based process control
基于化学多尺度热力学的过程控制
  • 批准号:
    RGPIN-2022-03486
  • 财政年份:
    2022
  • 资助金额:
    $ 9.71万
  • 项目类别:
    Discovery Grants Program - Individual
Distributed Control and Estimation of Sustainable Chemical Process Systems
可持续化学过程系统的分布式控制和估计
  • 批准号:
    RGPIN-2017-04198
  • 财政年份:
    2022
  • 资助金额:
    $ 9.71万
  • 项目类别:
    Discovery Grants Program - Individual
GOALI: Coordination of Multi-Stakeholder Process Networks in a Highly Electrified Chemical Industry
目标:在高度电气化的化工行业中协调多利益相关者流程网络
  • 批准号:
    2215526
  • 财政年份:
    2022
  • 资助金额:
    $ 9.71万
  • 项目类别:
    Standard Grant
A Scalable Process for the Chemical Recycling of PET using Ionic Organocatalysts
使用离子有机催化剂化学回收 PET 的可扩展工艺
  • 批准号:
    EP/V012797/1
  • 财政年份:
    2022
  • 资助金额:
    $ 9.71万
  • 项目类别:
    Research Grant
Development of waste slag conversion process based on chemical methodology and its applications in CO2 capture and utilization
基于化学方法的废渣转化工艺开发及其在CO2捕获和利用中的应用
  • 批准号:
    21K05147
  • 财政年份:
    2021
  • 资助金额:
    $ 9.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了