New Developments in Coupled Cluster Theory and Applications

耦合团簇理论及其应用的新进展

基本信息

  • 批准号:
    9017706
  • 负责人:
  • 金额:
    $ 16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1991
  • 资助国家:
    美国
  • 起止时间:
    1991-01-15 至 1994-06-30
  • 项目状态:
    已结题

项目摘要

With this grant in the Theoretical and Computational Program of the Chemistry Division, Professor Scuseria will develop new algorithms for the application of coupled-cluster perturbation theory to the study of molecular electronic structure. This theory will be instrumental in understanding chemical bonding in transition metal dimers, hydrides and the C-H bond of acetylene. Four research projects will be carried out. (1) The formulation and implementation of an analytical energy gradient capacity within the open shell coupled-cluster method. (2) The implementation of a full coupled-cluster method that includes all single, double, triple and quadruple excitations. (3) A solution of the coupled-cluster equations that attempts to transfer the effect of triple excitations directly onto the single and double excitation amplitudes. (4) A formulation of the coupled-cluster theory in terms of the Hartree-Fock-Bogoliubov reference state as an alternate to the conventional multi-reference approach.
在理论和计算程序中获得了这笔赠款, 化学部,教授Scuseria将开发新的 耦合团簇微扰的应用算法 分子电子结构的研究。这 理论将有助于理解化学键 在过渡金属二聚体中, 乙炔 将开展四个研究项目。(1)制定 和执行分析能源梯度能力 在开壳耦合簇方法中。(2)的 实现全耦合集群方法,包括 所有单、双、三、四重激励。(3)一 解的耦合集群方程,试图 将三重激发的效果直接转移到 单激励和双激励振幅。(4)的制剂 耦合团簇理论 Hartree-Fock-Bogoliubov参考状态作为替代 传统的多参考方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gustavo Scuseria其他文献

Gustavo Scuseria的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gustavo Scuseria', 18)}}的其他基金

Correlating Symmetry-Projected States
关联对称投影状态
  • 批准号:
    2153820
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Symmetry Projected Coupled Cluster Theory
对称投影耦合簇理论
  • 批准号:
    1762320
  • 财政年份:
    2018
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Low Cost Generalized Coupled Cluster Theory for Static and Dynamic Correlations
静态和动态相关性的低成本广义耦合簇理论
  • 批准号:
    1462434
  • 财政年份:
    2015
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Strong Correlations from Constrained Mean-Field Approaches
约束平均场方法的强相关性
  • 批准号:
    1110884
  • 财政年份:
    2011
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Development of Novel Exchange-Correlation Functionals & Applications
新型交换相关泛函的开发
  • 批准号:
    0807194
  • 财政年份:
    2008
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Development of Novel Exchange-Correlation Functionals & Applications
新型交换相关泛函的开发
  • 批准号:
    0457030
  • 财政年份:
    2005
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Linear Scaling Electronic Structure Methods & Applications
线性缩放电子结构方法
  • 批准号:
    9982156
  • 财政年份:
    2000
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Linear Scaling Electronic Structure Methods
线性缩放电子结构方法
  • 批准号:
    9618323
  • 财政年份:
    1997
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
New Developments and Applications in Coupled Clusters and Density Dependent Electronic Structure Methods
耦合团簇和密度依赖电子结构方法的新进展和应用
  • 批准号:
    9321297
  • 财政年份:
    1994
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant

相似海外基金

Brunel University London and PB Design and Developments Limited KTP 22_23 R5
伦敦布鲁内尔大学和 PB Design and Developments Limited KTP 22_23 R5
  • 批准号:
    10064693
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Knowledge Transfer Partnership
Developments of cosmic muometric buoy
宇宙测微浮标的进展
  • 批准号:
    23H01264
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New developments in aromatic architect: optimization of structures and spaces and created by pi-conjugated systems and functionalization
芳香建筑师的新发展:结构和空间的优化以及π共轭系统和功能化的创造
  • 批准号:
    23H01944
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
  • 批准号:
    23K03064
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
  • 批准号:
    23K03139
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments of variational quantum algorithms based on circuit structure optimization
基于电路结构优化的变分量子算法研究进展
  • 批准号:
    23K03266
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New developments in quasi-Monte Carlo methods through applications of mathematical statistics
数理统计应用准蒙特卡罗方法的新发展
  • 批准号:
    23K03210
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments of game theory played on networks with incomplete information and their applications to public policies
不完全信息网络博弈论的发展及其在公共政策中的应用
  • 批准号:
    23K01343
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Similarities in representation theory of quantum loop algebras of several types and their developments
几种量子环代数表示论的相似性及其发展
  • 批准号:
    23K12950
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了