Strong Correlations from Constrained Mean-Field Approaches

约束平均场方法的强相关性

基本信息

  • 批准号:
    1110884
  • 负责人:
  • 金额:
    $ 45.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

Gustavo Scuseria of Rice University is supported by an award from the Chemical Theory, Models and Computational Methods program for research to develop accurate approaches for describing strong (also known as static or non-dynamical) correlations in electronic structure theory. More than eighty years after the formulation of Schrodinger's equation, computational quantum chemistry has matured considerably, yet there remain formidable challenges to describing the electronic structure of many molecules and solids. When near or exact degeneracies are present, the single determinant picture breaks down and a description of strong correlation due to these degeneracies becomes crucial for even a qualitative description of the electronic structure. Addressing emergent electronic phenomena in chemistry, biology, and materials science requires calculations with significantly large active spaces, necessitating the development of alternative, more efficient descriptions of static correlation. The focus of this proposal is a method known as Constrained-Pairing Mean-Field Theory or CPMFT. The work is expected to significantly enhance our ability to model from first-principles the behavior of electrons in molecules and solids, resulting in better understanding and prediction of materials properties and chemical reactions. Many of the tools developed in the PI's group are widely used in academia, national laboratories, and industry. The current work is expected to have an equally broad impact and to contribute to the training of students at all levels.
莱斯大学的Gustavo Scuseria获得了化学理论,模型和计算方法计划的奖项,用于研究开发用于描述电子结构理论中强(也称为静态或非动态)相关性的准确方法。 在薛定谔方程提出80多年后,计算量子化学已经相当成熟,但在描述许多分子和固体的电子结构方面仍然存在巨大的挑战。当附近或确切的简并存在,单一的决定因素的图片打破和强相关性的描述,由于这些简并成为至关重要的,即使是定性描述的电子结构。解决化学、生物学和材料科学中出现的电子现象需要具有非常大的活动空间的计算,这就需要开发替代的、更有效的静态相关描述。该建议的重点是一种被称为约束配对平均场理论或CPMFT的方法。这项工作预计将显着提高我们从第一性原理建模分子和固体中电子行为的能力,从而更好地理解和预测材料特性和化学反应。PI小组开发的许多工具在学术界、国家实验室和工业界广泛使用。预计目前的工作将产生同样广泛的影响,并有助于培训各级学生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gustavo Scuseria其他文献

Gustavo Scuseria的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gustavo Scuseria', 18)}}的其他基金

Correlating Symmetry-Projected States
关联对称投影状态
  • 批准号:
    2153820
  • 财政年份:
    2022
  • 资助金额:
    $ 45.15万
  • 项目类别:
    Continuing Grant
Symmetry Projected Coupled Cluster Theory
对称投影耦合簇理论
  • 批准号:
    1762320
  • 财政年份:
    2018
  • 资助金额:
    $ 45.15万
  • 项目类别:
    Standard Grant
Low Cost Generalized Coupled Cluster Theory for Static and Dynamic Correlations
静态和动态相关性的低成本广义耦合簇理论
  • 批准号:
    1462434
  • 财政年份:
    2015
  • 资助金额:
    $ 45.15万
  • 项目类别:
    Continuing Grant
Development of Novel Exchange-Correlation Functionals & Applications
新型交换相关泛函的开发
  • 批准号:
    0807194
  • 财政年份:
    2008
  • 资助金额:
    $ 45.15万
  • 项目类别:
    Standard Grant
Development of Novel Exchange-Correlation Functionals & Applications
新型交换相关泛函的开发
  • 批准号:
    0457030
  • 财政年份:
    2005
  • 资助金额:
    $ 45.15万
  • 项目类别:
    Continuing Grant
Linear Scaling Electronic Structure Methods & Applications
线性缩放电子结构方法
  • 批准号:
    9982156
  • 财政年份:
    2000
  • 资助金额:
    $ 45.15万
  • 项目类别:
    Continuing Grant
Linear Scaling Electronic Structure Methods
线性缩放电子结构方法
  • 批准号:
    9618323
  • 财政年份:
    1997
  • 资助金额:
    $ 45.15万
  • 项目类别:
    Continuing Grant
New Developments and Applications in Coupled Clusters and Density Dependent Electronic Structure Methods
耦合团簇和密度依赖电子结构方法的新进展和应用
  • 批准号:
    9321297
  • 财政年份:
    1994
  • 资助金额:
    $ 45.15万
  • 项目类别:
    Continuing Grant
New Developments in Coupled Cluster Theory and Applications
耦合团簇理论及其应用的新进展
  • 批准号:
    9017706
  • 财政年份:
    1991
  • 资助金额:
    $ 45.15万
  • 项目类别:
    Continuing Grant

相似海外基金

Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
  • 批准号:
    2347850
  • 财政年份:
    2024
  • 资助金额:
    $ 45.15万
  • 项目类别:
    Continuing Grant
Exploration of spin topology, emergent inductance, and electron correlations in transition metal oxides
过渡金属氧化物中自旋拓扑、涌现电感和电子相关性的探索
  • 批准号:
    22KF0124
  • 财政年份:
    2023
  • 资助金额:
    $ 45.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Exploring quantum correlations in superconducting terahertz emitter
探索超导太赫兹发射器中的量子相关性
  • 批准号:
    23K17747
  • 财政年份:
    2023
  • 资助金额:
    $ 45.15万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Q-CALC (Quantum Contextual Artificial intelligence for Long-range Correlations)
Q-CALC(用于远程关联的量子上下文人工智能)
  • 批准号:
    10085547
  • 财政年份:
    2023
  • 资助金额:
    $ 45.15万
  • 项目类别:
    Small Business Research Initiative
Emergent spacetime based on quantum correlations and measurements
基于量子相关性和测量的涌现时空
  • 批准号:
    23KJ1154
  • 财政年份:
    2023
  • 资助金额:
    $ 45.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Identification of the origins of inherited retinal diseases and clarification of genotype-phenotype correlations based on three major ethnic groups worldwide utilizing artificial intelligence.
利用人工智能,基于全球三个主要种族群体,识别遗传性视网膜疾病的起源并阐明基因型-表型相关性。
  • 批准号:
    22KJ2665
  • 财政年份:
    2023
  • 资助金额:
    $ 45.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Exploring genotype-phenotype correlations in Sox10 mutations
探索 Sox10 突变的基因型-表型相关性
  • 批准号:
    2892101
  • 财政年份:
    2023
  • 资助金额:
    $ 45.15万
  • 项目类别:
    Studentship
Various aspects of correlations in the quark-gluon plasma
夸克-胶子等离子体中相关性的各个方面
  • 批准号:
    23K03386
  • 财政年份:
    2023
  • 资助金额:
    $ 45.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Diagnosis and Genotype-Phenotype Correlations in Early Life Epilepsy and CDKL5 Disorder
早期癫痫和 CDKL5 疾病的诊断和基因型-表型相关性
  • 批准号:
    10758725
  • 财政年份:
    2023
  • 资助金额:
    $ 45.15万
  • 项目类别:
Exploring genotype-phenotype correlations in Sox10 mutations
探索 Sox10 突变的基因型-表型相关性
  • 批准号:
    2885791
  • 财政年份:
    2023
  • 资助金额:
    $ 45.15万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了