Linear Scaling Electronic Structure Methods & Applications
线性缩放电子结构方法
基本信息
- 批准号:9982156
- 负责人:
- 金额:$ 48.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-03-01 至 2005-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Gustavo Scuseria of Rice University is supported by the Theoretical and Computational Chemistry Program to continue his development and application of quantum chemical computational tools. He will implement (1) linear-scaling density functional methods for very large molecules, (2) exchange-correlation functionals for higher-accuracy calculations, and (3) linear-scaling pertubation and coupled-cluster theories in the atomic orbital basis. He will apply these techniques to the study of fullerene and carbon nanotube problems of practical relevance.Electronic structure methods are important computational tools in the prediction of chemical properties and the interpretation of experimental phenomena. Until recently, highly accurate calculations have been limited to small molecules because of the steep scaling of the computation with molecular size. Fast, linear-scaling methods are needed to overcome this bottleneck, since there is an extensive number of chemical problems involving large molecules requiring high-accuracy predictions of bond-breaking, electronic excitation, structure, and detailed reaction energetics.
莱斯大学的Gustavo Scuseria得到了理论和计算化学项目的支持,继续开发和应用量子化学计算工具。 他将实现(1)线性标度密度泛函方法非常大的分子,(2)交换相关泛函更高精度的计算,和(3)线性标度微扰和耦合团簇理论的原子轨道基础。 他将把这些技术应用于富勒烯和碳纳米管的实际相关问题的研究。电子结构方法是预测化学性质和解释实验现象的重要计算工具。 直到最近,高精度的计算一直局限于小分子,因为计算与分子大小的急剧缩放。 快速,线性标度的方法需要克服这个瓶颈,因为有大量的化学问题,涉及大分子需要高精度的预测键断裂,电子激发,结构和详细的反应能量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gustavo Scuseria其他文献
Gustavo Scuseria的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gustavo Scuseria', 18)}}的其他基金
Correlating Symmetry-Projected States
关联对称投影状态
- 批准号:
2153820 - 财政年份:2022
- 资助金额:
$ 48.16万 - 项目类别:
Continuing Grant
Symmetry Projected Coupled Cluster Theory
对称投影耦合簇理论
- 批准号:
1762320 - 财政年份:2018
- 资助金额:
$ 48.16万 - 项目类别:
Standard Grant
Low Cost Generalized Coupled Cluster Theory for Static and Dynamic Correlations
静态和动态相关性的低成本广义耦合簇理论
- 批准号:
1462434 - 财政年份:2015
- 资助金额:
$ 48.16万 - 项目类别:
Continuing Grant
Strong Correlations from Constrained Mean-Field Approaches
约束平均场方法的强相关性
- 批准号:
1110884 - 财政年份:2011
- 资助金额:
$ 48.16万 - 项目类别:
Standard Grant
Development of Novel Exchange-Correlation Functionals & Applications
新型交换相关泛函的开发
- 批准号:
0807194 - 财政年份:2008
- 资助金额:
$ 48.16万 - 项目类别:
Standard Grant
Development of Novel Exchange-Correlation Functionals & Applications
新型交换相关泛函的开发
- 批准号:
0457030 - 财政年份:2005
- 资助金额:
$ 48.16万 - 项目类别:
Continuing Grant
Linear Scaling Electronic Structure Methods
线性缩放电子结构方法
- 批准号:
9618323 - 财政年份:1997
- 资助金额:
$ 48.16万 - 项目类别:
Continuing Grant
New Developments and Applications in Coupled Clusters and Density Dependent Electronic Structure Methods
耦合团簇和密度依赖电子结构方法的新进展和应用
- 批准号:
9321297 - 财政年份:1994
- 资助金额:
$ 48.16万 - 项目类别:
Continuing Grant
New Developments in Coupled Cluster Theory and Applications
耦合团簇理论及其应用的新进展
- 批准号:
9017706 - 财政年份:1991
- 资助金额:
$ 48.16万 - 项目类别:
Continuing Grant
相似海外基金
Scaling and Spreading Electronic Capture of Patient-Reported Outcomes Using a National Surgical Quality Improvement Program
使用国家手术质量改进计划扩大和传播患者报告结果的电子捕获
- 批准号:
9793541 - 财政年份:2019
- 资助金额:
$ 48.16万 - 项目类别:
CAREER: Thermal stability and scaling of nanoscale spin-electronic devices based on novel inverse-Heusler alloys
职业:基于新型逆赫斯勒合金的纳米级自旋电子器件的热稳定性和缩放
- 批准号:
1846829 - 财政年份:2019
- 资助金额:
$ 48.16万 - 项目类别:
Continuing Grant
Reduced Scaling Many-Body Electronic Structure Methods: Improved Accuracy and Precision
缩小比例的多体电子结构方法:提高准确性和精度
- 批准号:
1800348 - 财政年份:2018
- 资助金额:
$ 48.16万 - 项目类别:
Standard Grant
Scaling down classical vacuum electronic devices to make them suitable for THz band
缩小经典真空电子设备的尺寸,使其适用于太赫兹频段
- 批准号:
515021-2017 - 财政年份:2017
- 资助金额:
$ 48.16万 - 项目类别:
Engage Grants Program
GOALI: Scaling-up Electronic Purification of Single Wall Carbon Nanotubes via Nanoscale Thermocapillary Flows for High Performance Transistors
GOALI:通过高性能晶体管的纳米级热毛细管流扩大单壁碳纳米管的电子纯化
- 批准号:
1436133 - 财政年份:2014
- 资助金额:
$ 48.16万 - 项目类别:
Standard Grant
A low-order scaling incremental correlation method for the calculation of electronic excitation energies
计算电子激发能的低阶标度增量相关法
- 批准号:
257657920 - 财政年份:2014
- 资助金额:
$ 48.16万 - 项目类别:
Research Grants
3D correlated oxide nano-structures for nano-scaling phenomena and electronic phase change memory application.
用于纳米尺度现象和电子相变存储器应用的 3D 相关氧化物纳米结构。
- 批准号:
26246013 - 财政年份:2014
- 资助金额:
$ 48.16万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Scaling limits of the electronic Schrödinger equation fordiatomic molecules: Asymptotic prediction of correlation structure,potential energy curves, and symmetry quantum numbers
双原子分子电子薛定谔方程的标度极限:相关结构、势能曲线和对称量子数的渐近预测
- 批准号:
234732874 - 财政年份:2013
- 资助金额:
$ 48.16万 - 项目类别:
Research Grants
NEB: Ultimate Electronic Device Scaling Using Structurally Precise Graphene Nanoribbons
NEB:使用结构精确的石墨烯纳米带实现终极电子设备缩放
- 批准号:
1124754 - 财政年份:2011
- 资助金额:
$ 48.16万 - 项目类别:
Standard Grant
Approaching chemical accuracy in the electronic structure theory of solids: Linearly-scaling periodic local coupled cluster method in combination with explicitly correlated Møller-Plesset perturbation theory
接近固体电子结构理论中的化学精度:线性尺度周期性局域耦合簇方法与显式相关的 Mäller-Plesset 微扰理论相结合
- 批准号:
179161791 - 财政年份:2010
- 资助金额:
$ 48.16万 - 项目类别:
Research Grants