Symmetry Projected Coupled Cluster Theory

对称投影耦合簇理论

基本信息

  • 批准号:
    1762320
  • 负责人:
  • 金额:
    $ 45.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-12-15 至 2022-11-30
  • 项目状态:
    已结题

项目摘要

Gustavo Scuseria of William Marsh Rice University is supported by an award from the Chemical Theory, Models and Computational Methods program in the Chemistry Division to develop accurate and affordable computational methods for challenging molecules. The systems of interest have several electrons that influence each other in ways that lead to many states with similar energies. Systems of this type are called "strongly-correlated" and can exhibit novel properties which have the potential to spur technological advancement in a number of fields. However, these systems are challenging to theoretically describe and are often intractable for current computational methods. Professor Scuseria's group is developing a new approach that is accurate and can be applied to large, realistic systems, all the while giving superior results for strongly correlated systems. The researchers are working both to continue to develop the new approach and to apply the method to important systems like transition-metal clusters and polycyclic aromatic hydrocarbons in order to provide useful insights into technologically-relevant systems. Dr. Scuseria is involved in outreach activities in the Houston area. Specifically he is organizing events with the Latin American Graduate Student Association at Rice University. He provides informal advice about job opportunities in academia as well as in industry. Dr. Scuseria is also involved in the Rice Science Cafe, where ideas about science and technology are discussed with the general public. Strong correlations are ubiquitous and technologically important, but unfortunately cannot be accurately described except by a handful of computational approaches. One of the more promising approaches for the treatment of strong correlation is the use of symmetry projection, i.e. recovering the symmetry-preserving component of a broken-symmetry wavefunction. Symmetry projection is black box, and symmetry projected mean-field methods can be applied to systems with dozens or even hundreds of strongly correlated electrons. In order to reach quantitative accuracy for strongly-correlated systems, the Scuseria group is working to extend their symmetry projected mean-field methods to symmetry projected coupled cluster theory. This theory combines the advantages of symmetry projection for the description of strong correlation on the one hand with coupled cluster theory for the description of weak correlation on the other, becoming a form of black-box multireference coupled cluster theory. The new approach has the potential to efficiently and reliably treat weak and strong correlations on equal footing while affording the straightforward computation of properties and other expectation values. While the Scuseria group continues to develop and extend symmetry projected coupled cluster theory, their current applications of the approach are strongly correlated systems which display spin frustration and accompanying magnetic order, which should provide valuable insights for future technological development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
William Marsh Rice University的Gustavo Scuseria获得了化学系化学理论,模型和计算方法项目的奖项,为具有挑战性的分子开发准确和负担得起的计算方法。 感兴趣的系统有几个电子,它们以导致许多具有相似能量的状态的方式相互影响。 这种类型的系统被称为“强相关”,可以表现出新的特性,这些特性有可能刺激许多领域的技术进步。然而,这些系统是具有挑战性的理论描述,往往是棘手的目前的计算方法。Scuseria教授的小组正在开发一种新的方法,这种方法准确,可以应用于大型的现实系统,同时对强相关系统给出上级结果。研究人员正在努力继续开发新方法,并将该方法应用于过渡金属簇合物和多环芳烃等重要系统,以便为技术相关系统提供有用的见解。Scuseria博士参与了休斯顿地区的外展活动。 具体来说,他正在与莱斯大学的拉丁美洲研究生协会组织活动。 他提供有关学术界和工业界就业机会的非正式建议。 Scuseria博士还参与了水稻科学咖啡馆,在那里与公众讨论有关科学和技术的想法。强相关性无处不在,在技术上也很重要,但不幸的是,除了少数计算方法之外,无法准确描述。 处理强相关性的一种更有前途的方法是使用对称投影,即恢复对称性破缺波函数的保对称分量。对称投影是黑箱,对称投影平均场方法可以应用于具有几十个甚至几百个强关联电子的系统。为了达到强关联系统的定量精度,Scuseria小组正在努力将他们的对称投影平均场方法扩展到对称投影耦合簇理论。该理论结合了对称投影对强关联的描述和耦合团簇理论对弱关联的描述的优点,成为黑箱多参考耦合团簇理论的一种形式。新的方法有可能有效和可靠地对待弱和强相关性在平等的基础上,同时提供简单的计算属性和其他期望值。虽然Scuseria小组继续发展和扩展对称投影耦合团簇理论,但他们目前的方法应用于显示自旋挫折和伴随的磁序的强关联系统,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Advancing solid-state band gap predictions
推进固态带隙预测
Particle-number projected Bogoliubov-coupled-cluster theory: Application to the pairing Hamiltonian
  • DOI:
    10.1103/physrevc.99.044301
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Y. Qiu;T. M. Henderson;T. Duguet;T. Duguet;G. Scuseria
  • 通讯作者:
    Y. Qiu;T. M. Henderson;T. Duguet;T. Duguet;G. Scuseria
Exploring non-linear correlators on AGP
探索 AGP 上的非线性相关器
  • DOI:
    10.1063/5.0039618
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Khamoshi, Armin;Chen, Guo P.;Henderson, Thomas M.;Scuseria, Gustavo E.
  • 通讯作者:
    Scuseria, Gustavo E.
Geminal-based configuration interaction
基于 Geminal 的配置交互
  • DOI:
    10.1063/1.5116715
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Henderson, Thomas M.;Scuseria, Gustavo E.
  • 通讯作者:
    Scuseria, Gustavo E.
Correlating the antisymmetrized geminal power wave function
关联反对称双子功率波函数
  • DOI:
    10.1063/5.0021144
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Henderson, Thomas M.;Scuseria, Gustavo E.
  • 通讯作者:
    Scuseria, Gustavo E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gustavo Scuseria其他文献

Gustavo Scuseria的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gustavo Scuseria', 18)}}的其他基金

Correlating Symmetry-Projected States
关联对称投影状态
  • 批准号:
    2153820
  • 财政年份:
    2022
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Continuing Grant
Low Cost Generalized Coupled Cluster Theory for Static and Dynamic Correlations
静态和动态相关性的低成本广义耦合簇理论
  • 批准号:
    1462434
  • 财政年份:
    2015
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Continuing Grant
Strong Correlations from Constrained Mean-Field Approaches
约束平均场方法的强相关性
  • 批准号:
    1110884
  • 财政年份:
    2011
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Standard Grant
Development of Novel Exchange-Correlation Functionals & Applications
新型交换相关泛函的开发
  • 批准号:
    0807194
  • 财政年份:
    2008
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Standard Grant
Development of Novel Exchange-Correlation Functionals & Applications
新型交换相关泛函的开发
  • 批准号:
    0457030
  • 财政年份:
    2005
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Continuing Grant
Linear Scaling Electronic Structure Methods & Applications
线性缩放电子结构方法
  • 批准号:
    9982156
  • 财政年份:
    2000
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Continuing Grant
Linear Scaling Electronic Structure Methods
线性缩放电子结构方法
  • 批准号:
    9618323
  • 财政年份:
    1997
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Continuing Grant
New Developments and Applications in Coupled Clusters and Density Dependent Electronic Structure Methods
耦合团簇和密度依赖电子结构方法的新进展和应用
  • 批准号:
    9321297
  • 财政年份:
    1994
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Continuing Grant
New Developments in Coupled Cluster Theory and Applications
耦合团簇理论及其应用的新进展
  • 批准号:
    9017706
  • 财政年份:
    1991
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Continuing Grant

相似海外基金

SBIR Phase I: Novel Camera-Projector Device Leveraging Markerless Skin Registration and Projected Augmented Reality Software to Enable Navigation for Minimally Invasive Procedures
SBIR 第一阶段:新型相机投影仪设备利用无标记皮肤配准和投影增强现实软件实现微创手术导航
  • 批准号:
    2321906
  • 财政年份:
    2024
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Standard Grant
CAREER: Novel platforms for topology and non-Fermi liquids: From projected topological branes to non-Abelian and fractional materials
职业:拓扑和非费米液体的新颖平台:从投影拓扑膜到非阿贝尔和分数材料
  • 批准号:
    2238679
  • 财政年份:
    2023
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Continuing Grant
PEARL 2.0: The impact of the Ending the HIV Epidemic initiative and risk factor interventions on the projected multimorbidity burden and healthcare costs for people aging with HIV in the United States
PEARL 2.0:“结束艾滋病毒流行”倡议和风险因素干预措施对美国艾滋病毒感染者的预计多重病负担和医疗保健费用的影响
  • 批准号:
    10886848
  • 财政年份:
    2023
  • 资助金额:
    $ 45.65万
  • 项目类别:
PEARL 2.0: The impact of the Ending the HIV Epidemic initiative and risk factor interventions on the projected multimorbidity burden and healthcare costs for people aging with HIV in the United States
PEARL 2.0:“结束艾滋病毒流行”倡议和风险因素干预措施对美国艾滋病毒感染者的预计多重病负担和医疗保健费用的影响
  • 批准号:
    10632482
  • 财政年份:
    2022
  • 资助金额:
    $ 45.65万
  • 项目类别:
Climate model biases and projected changes in climate extremes
气候模型偏差和极端气候变化的预测
  • 批准号:
    RGPIN-2018-03787
  • 财政年份:
    2022
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Discovery Grants Program - Individual
Longitudinal trends in free sugar content of beverages in the Canadian retail food supply: Evaluation of current and projected impacts of novel policies to reduce free sugar consumption
加拿大零售食品供应中饮料游离糖含量的纵向趋势:评估减少游离糖消费的新政策的当前和预计影响
  • 批准号:
    471940
  • 财政年份:
    2022
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Fellowship Programs
Correlating Symmetry-Projected States
关联对称投影状态
  • 批准号:
    2153820
  • 财政年份:
    2022
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Continuing Grant
Clarifying the social-ecological implications of the recent and the projected future global forest cover changes under the SSPs
澄清 SSP 下近期和预计的未来全球森林覆盖变化的社会生态影响
  • 批准号:
    22K01038
  • 财政年份:
    2022
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Rossby Wave Breaking Archetypal Patterns, Processes and Projected Changes from the 20th (twentieth) to the 21st (twenty-first) Century
罗斯比浪潮打破了 20 世纪到 21 世纪的原型模式、过程和预计变化
  • 批准号:
    2148567
  • 财政年份:
    2022
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Standard Grant
An improved dual projected gradient method for log-determinant semidefinite problems
解决对数行列式半定问题的改进对偶投影梯度法
  • 批准号:
    21K11767
  • 财政年份:
    2021
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了