Workshops on Applications of Functional Limit Theory to Econometrics and Statistics to be held at Yale University, New Haven, CT., Fall and Spring Academic Year 91, 92 and 93
功能极限理论在计量经济学和统计学中的应用研讨会将于第 91、92 和 93 学年秋季和春季在康涅狄格州纽黑文市耶鲁大学举办
基本信息
- 批准号:9100865
- 负责人:
- 金额:$ 16.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1991
- 资助国家:美国
- 起止时间:1991-09-01 至 1995-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent research in econometrics and statistics has focused on many problems that are of common interest to both disciplines. One that is especially noteworthy is functional central limit theory and its manifold applications in statistical theory, time series and microeconometrics. This project will foster the growing interaction between professional statisticians and econometricians in this general field. Building on current areas of strength at Yale University, five members of the Economics and Statistics Departments will develop a series of intensive workshops on functional limit theory and its applications: statistical analyses of trending time series, cointegrated systems, long-run equilibria and transient dynamics, semiparametrics, empirical processes for dependent variables and possibly estimation via simulation methods, and structural change/change point problems. The workshops will bring together small groups of researchers, both well-established and new contributors, to review current progress and explore future directions. The workshops will be supplemented by visits from leading overseas researchers, who will give lecture series at the cutting edge of their specialties on subject matter that is closely related to the workshop themes.
计量经济学和统计学最近的研究集中在两个学科共同感兴趣的许多问题上。其中特别值得注意的是功能中心极限理论及其在统计理论、时间序列和微观计量经济学中的多种应用。这个项目将促进专业统计学家和计量经济学家在这一领域日益增长的互动。以耶鲁大学目前的优势领域为基础,经济和统计系的五名成员将开展一系列关于功能极限理论及其应用的密集研讨会:趋势时间序列的统计分析,协整系统,长期平衡和瞬态动力学,半参数,因变量的经验过程和可能通过模拟方法估计,以及结构变化/变化点问题。这些研讨会将汇集小型研究人员小组,既有成熟的研究人员,也有新的研究人员,以审查当前的进展并探索未来的方向。此外,海外顶尖研究人员还将访问研讨会,就与研讨会主题密切相关的主题,就各自专业的前沿领域发表系列讲座。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald Andrews其他文献
Dynamic Analysis of Income and Independence Effect of African American Female Labor Force Participation on Divorce
- DOI:
10.1007/s11293-006-9059-1 - 发表时间:
2007-01-09 - 期刊:
- 影响因子:0.800
- 作者:
Sung Chul No;Donald Andrews;Ashagre Yigletu - 通讯作者:
Ashagre Yigletu
Donald Andrews的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald Andrews', 18)}}的其他基金
Advances in Econometrics for Treatment Effect Bounds, Time-Varying-Parameter Nonstationary/Stationary Autoregressive Models, and Identification-Robust Inference
治疗效果界限、时变参数非平稳/平稳自回归模型和识别稳健推理的计量经济学进展
- 批准号:
1355504 - 财政年份:2014
- 资助金额:
$ 16.61万 - 项目类别:
Standard Grant
Estimation and Inference in Econometric Models with Asymptotic Discontinuities
具有渐近不连续性的计量经济模型中的估计和推理
- 批准号:
1058376 - 财政年份:2011
- 资助金额:
$ 16.61万 - 项目类别:
Continuing Grant
Inference in Econometric Models with Asymptotic Discontinuities
具有渐近不连续性的计量经济模型的推论
- 批准号:
0751517 - 财政年份:2008
- 资助金额:
$ 16.61万 - 项目类别:
Standard Grant
Adaptive Estimation, the Block-Block Bootstrap, Optimal Tests with Weak Instruments, and Inference with Common Shocks
自适应估计、块-块引导、弱仪器的最佳测试以及常见冲击的推理
- 批准号:
0417911 - 财政年份:2004
- 资助金额:
$ 16.61万 - 项目类别:
Continuing Grant
Testing and Estimation of Econometric Models
计量经济模型的检验和估计
- 批准号:
9410675 - 财政年份:1995
- 资助金额:
$ 16.61万 - 项目类别:
Continuing Grant
U.S.-Austria Cooperative Research: Testing and Estimation ofModels with Structural Change
美国-奥地利合作研究:结构变化模型的测试和估计
- 批准号:
9215258 - 财政年份:1993
- 资助金额:
$ 16.61万 - 项目类别:
Standard Grant
Functional Limit Theory in Econometrics
计量经济学中的函数极限理论
- 批准号:
9121914 - 财政年份:1992
- 资助金额:
$ 16.61万 - 项目类别:
Continuing Grant
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Development and Functional Evaluation of Cyclic Pyrrole-Imidazole Polyamides for Anticancer Drug Applications
用于抗癌药物应用的环状吡咯-咪唑聚酰胺的开发和功能评价
- 批准号:
22KJ1695 - 财政年份:2023
- 资助金额:
$ 16.61万 - 项目类别:
Grant-in-Aid for JSPS Fellows
2D vertical heterostructures for multi-functional energy applications
用于多功能能源应用的二维垂直异质结构
- 批准号:
FT220100209 - 财政年份:2023
- 资助金额:
$ 16.61万 - 项目类别:
ARC Future Fellowships
Real-World Applications of the Antiaromaticity Concept: Assemblies, Synthetic Strategies, and Functional Properties
反芳香性概念的实际应用:组装、合成策略和功能特性
- 批准号:
2303851 - 财政年份:2023
- 资助金额:
$ 16.61万 - 项目类别:
Standard Grant
Functional equations for Nielsen polylogarithms and their arithmetic applications
尼尔森多对数的函数方程及其算术应用
- 批准号:
22KJ1612 - 财政年份:2023
- 资助金额:
$ 16.61万 - 项目类别:
Grant-in-Aid for JSPS Fellows
IRES Track 1: US-Japan Collaborative Research and Education Effort for Synthesis and Applications of Functional Nanomaterials
IRES Track 1:美日功能纳米材料合成和应用的合作研究和教育工作
- 批准号:
2428284 - 财政年份:2023
- 资助金额:
$ 16.61万 - 项目类别:
Standard Grant
ATD: Anomaly detection and functional data analysis with applications to threat detection for multimodal satellite data
ATD:异常检测和功能数据分析以及多模式卫星数据威胁检测的应用
- 批准号:
2319011 - 财政年份:2023
- 资助金额:
$ 16.61万 - 项目类别:
Standard Grant
Scaling up biodegradable plant-based resin production for high-volume food-contact packaging, starting with functional and barrier coatings for paperboard applications
从纸板应用的功能性和阻隔涂层开始,扩大用于大批量食品接触包装的可生物降解植物基树脂的生产
- 批准号:
10083074 - 财政年份:2023
- 资助金额:
$ 16.61万 - 项目类别:
Collaborative R&D
Applications of functional analysis to the theory of the zeta function.
泛函分析在 zeta 函数理论中的应用。
- 批准号:
23K03050 - 财政年份:2023
- 资助金额:
$ 16.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Functional Luminescent Inorganic Nanomaterials: From Fundamentals to Applications
功能性发光无机纳米材料:从基础到应用
- 批准号:
RGPIN-2022-04704 - 财政年份:2022
- 资助金额:
$ 16.61万 - 项目类别:
Discovery Grants Program - Individual
3D microarchitecture for functional polymeric materials and their applications
功能高分子材料的3D微结构及其应用
- 批准号:
RGPIN-2017-04489 - 财政年份:2022
- 资助金额:
$ 16.61万 - 项目类别:
Discovery Grants Program - Individual