Applications of functional analysis to the theory of the zeta function.

泛函分析在 zeta 函数理论中的应用。

基本信息

  • 批准号:
    23K03050
  • 负责人:
  • 金额:
    $ 2.91万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2023
  • 资助国家:
    日本
  • 起止时间:
    2023-04-01 至 2028-03-31
  • 项目状态:
    未结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

鈴木 正俊其他文献

The Riemann hypothesis for certain integrals of Eisenstein series(Analytic Number Theory and Surrounding Areas)
艾森斯坦级数某些积分的黎曼假设(解析数论及周边地区)
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    鈴木 正俊
  • 通讯作者:
    鈴木 正俊
Riemann $xi$-関数の実部の零点の垂直線上の最隣接間隔分布 (解析的整数論 : 数論的対象の分布と近似)
黎曼 $xi$ - 函数实部零点垂直线上的最近邻区间分布(解析数论:数论对象的分布和近似)
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    鈴木 正俊
  • 通讯作者:
    鈴木 正俊

鈴木 正俊的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('鈴木 正俊', 18)}}的其他基金

ゼータ関数から派生する関数空間の諸性質の研究
由zeta函数导出的函数空间的各种性质的研究
  • 批准号:
    17K05163
  • 财政年份:
    2017
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
スペクトル理論の立場からの数論的L関数の零点の研究
谱论视角下算术L函数的零点研究
  • 批准号:
    07J00092
  • 财政年份:
    2007
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

多重ゼータ関数の解析的挙動の研究と数論的関数への応用
多zeta函数的解析行为研究及其在数论函数中的应用
  • 批准号:
    24KJ1235
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非コンパクト力学系におけるRuelleゼータ関数の行列式表示
非紧动力系统中 Ruelle zeta 函数的行列式表示
  • 批准号:
    24K16938
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
多重ゼータ関数の一般正則整数点とその広がり
多个zeta函数的一般正则整数点及其分布
  • 批准号:
    24KJ1252
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
ゼータ関数・L関数の値分布および零点分布について
关于zeta函数和L函数的值分布和零点分布
  • 批准号:
    24K16907
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
力学系のゼータ関数とその数論的力学系への応用
动力系统的Zeta函数及其在算术动力系统中的应用
  • 批准号:
    22KJ0286
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
絶対Euler積を用いた絶対ゼータ関数の研究
使用绝对欧拉积研究绝对 zeta 函数
  • 批准号:
    22KJ2684
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
新谷ゼータ関数・反復積分・GT理論の3つを軸とした周期の総合的研究
以新谷zeta函数、迭代积分、GT理论为中心的周期综合研究
  • 批准号:
    22K03244
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ゼータ関数の解析的挙動とその応用
zeta函数的解析行为及其应用
  • 批准号:
    22K03276
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Schur多重ゼータ関数の数論的性質および組合せ論的性質の解明とその応用
Schur 多重 zeta 函数的算术和组合性质及其应用的阐明
  • 批准号:
    22K03274
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
エントロピースペクトルの剛性問題とRuelleゼータ関数の表示
熵谱的刚度问题及Ruelle zeta函数的表示
  • 批准号:
    21K13809
  • 财政年份:
    2021
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了