Mathematical Sciences: Non-Commutative Differential Geometryof the Deformations of Commutative Rings

数学科学:交换环变形的非交换微分几何

基本信息

  • 批准号:
    9101817
  • 负责人:
  • 金额:
    $ 5.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1991
  • 资助国家:
    美国
  • 起止时间:
    1991-07-01 至 1993-12-31
  • 项目状态:
    已结题

项目摘要

This research is concerned with the noncommutative differential geometry of the deformations of commutative algebras; algebras of differential operators; symbols of pseudo-differential operators; coordinate algebras of quantum groups and spaces; and differential operators on quantum manifolds. The principal investigator will develop a Riemann-Roch theorem for quantum manifolds through his work on the cyclic homology theory of quantum groups and spaces. Applications of these results to arithmetic and conformal quantum field theory will also be explored. The research in this project is an outgrowth of calculus on manifolds. Roughly speaking, manifolds are surfaces and their higher-dimensional analogues. Differential operators, which come from calculus, see the manifold only in small pieces, but nevertheless contain information about its overall shape and conformation. One strategy for extracting this sort of information from differential operators involves assembling the operators into algebraic structures and then using algebraic machinery. This project is concerned with the development of this machinery.
本研究关注的是非对易的 可换微分几何 代数;微分算子代数;符号 伪微分算子;坐标代数 量子群和空间;和微分算子 量子流形 首席研究员将制定一份 量子流形的Riemann-Roch定理通过他的工作 量子群和空间的循环同调理论。 这些结果在算术和保角上的应用 量子场论也将探讨。 这个项目的研究是微积分学的一个分支 在流形上。 粗略地说,流形是曲面, 它们的高维类似物。 微分算子, 它来自微积分,只在小的时候看到流形, 件,但仍然包含有关其整体 形状和构象。提取这种排序的一种策略是 来自微分算子的信息的集合 将运算符转化为代数结构,然后使用 代数机器 该项目涉及 这一机制的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Boris Tsygan其他文献

Boris Tsygan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Boris Tsygan', 18)}}的其他基金

Summer school on Noncommutative geometry
非交换几何暑期学校
  • 批准号:
    1041576
  • 财政年份:
    2010
  • 资助金额:
    $ 5.23万
  • 项目类别:
    Standard Grant
Noncommutative geometry, microlocal analysis, index theorems and symplectic geometry
非交换几何、微局域分析、指数定理和辛几何
  • 批准号:
    0906391
  • 财政年份:
    2009
  • 资助金额:
    $ 5.23万
  • 项目类别:
    Standard Grant
Trends in noncommutative geometry
非交换几何的趋势
  • 批准号:
    0728322
  • 财政年份:
    2007
  • 资助金额:
    $ 5.23万
  • 项目类别:
    Standard Grant
Non Commutative Geometry, Microlocal Analysis, and Symplectic Geometry
非交换几何、微局部分析和辛几何
  • 批准号:
    0605030
  • 财政年份:
    2006
  • 资助金额:
    $ 5.23万
  • 项目类别:
    Standard Grant
Non commutative geometry, microlocal analysis, and symplectic geometry
非交换几何、微局域分析和辛几何
  • 批准号:
    0306624
  • 财政年份:
    2003
  • 资助金额:
    $ 5.23万
  • 项目类别:
    Standard Grant
Noncommutative Differential Geometry of Deformations of Commutative Rings
交换环变形的非交换微分几何
  • 批准号:
    0308683
  • 财政年份:
    2002
  • 资助金额:
    $ 5.23万
  • 项目类别:
    Standard Grant
Noncommutative Differential Geometry of Deformations of Commutative Rings
交换环变形的非交换微分几何
  • 批准号:
    9970591
  • 财政年份:
    1999
  • 资助金额:
    $ 5.23万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Non-Commutative Differential Geometry of Deformations of Commutative Rings: Operations Index Theorems and Characteristic Classes
数学科学:交换环变形的非交换微分几何:运算指数定理和特征类
  • 批准号:
    9623051
  • 财政年份:
    1996
  • 资助金额:
    $ 5.23万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Non-commutative Differential Geometryof Deformations of Commutative Rings: Operations Index Theorems and Characteristic Classes
数学科学:交换环变形的非交换微分几何:运算指数定理和特征类
  • 批准号:
    9307927
  • 财政年份:
    1993
  • 资助金额:
    $ 5.23万
  • 项目类别:
    Continuing Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

NSF/CBMS Regional Conference in the Mathematical Sciences -Non-Positive Curvature in Group Theory; Albany, NY; August 15-20, 2004
NSF/CBMS 数学科学区域会议 - 群论中的非正曲率;
  • 批准号:
    0333532
  • 财政年份:
    2004
  • 资助金额:
    $ 5.23万
  • 项目类别:
    Standard Grant
CBMS Regional Conference in the Mathematical Sciences--The existence and non-existence of periodic orbits in smooth dynamical systems--July 10-14, 2000
CBMS 数学科学区域会议——光滑动力系统中周期轨道的存在与不存在——2000 年 7 月 10-14 日
  • 批准号:
    9978848
  • 财政年份:
    2000
  • 资助金额:
    $ 5.23万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Sums of L-functions, the Metaplectic Group, and Non-Generic Representations
数学科学:L 函数之和、元波群和非泛型表示
  • 批准号:
    9896186
  • 财政年份:
    1998
  • 资助金额:
    $ 5.23万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Instabilities and Bifurcations in Non-Newtonian Shear Flows
数学科学:非牛顿剪切流中的不稳定性和分岔
  • 批准号:
    9704622
  • 财政年份:
    1997
  • 资助金额:
    $ 5.23万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Structure of Vector-Valued Function Spaces and Non-Commutative Function Spaces
数学科学:向量值函数空间和非交换函数空间的结构
  • 批准号:
    9703789
  • 财政年份:
    1997
  • 资助金额:
    $ 5.23万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Large-eddy Simulation & Mathematical Analysis of Non-equilibrium & Non-linear Processes in Mantle Convection
数学科学:大涡模拟
  • 批准号:
    9622889
  • 财政年份:
    1996
  • 资助金额:
    $ 5.23万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Non-Commutative Differential Geometry of Deformations of Commutative Rings: Operations Index Theorems and Characteristic Classes
数学科学:交换环变形的非交换微分几何:运算指数定理和特征类
  • 批准号:
    9623051
  • 财政年份:
    1996
  • 资助金额:
    $ 5.23万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Sums of L-functions, the Metaplectic Group, and Non-Generic Representations
数学科学:L 函数之和、元波群和非泛型表示
  • 批准号:
    9531957
  • 财政年份:
    1996
  • 资助金额:
    $ 5.23万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Non-Reflecting Boundary Conditions Based on Far Field Expansions
数学科学:基于远场展开的非反射边界条件
  • 批准号:
    9530937
  • 财政年份:
    1996
  • 资助金额:
    $ 5.23万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Boundary Control Problems for Linear and Non-Linear Partial Differential Equations and Riccati Equations
数学科学:线性和非线性偏微分方程和 Riccati 方程的边界控制问题
  • 批准号:
    9504822
  • 财政年份:
    1995
  • 资助金额:
    $ 5.23万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了