Non Commutative Geometry, Microlocal Analysis, and Symplectic Geometry

非交换几何、微局部分析和辛几何

基本信息

  • 批准号:
    0605030
  • 负责人:
  • 金额:
    $ 14.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-07-01 至 2009-06-30
  • 项目状态:
    已结题

项目摘要

The proposed research is intended to answer several questions of noncommutative geometry, symplectic geometry, and microlocal analysis. In particular, I will continue my research on index theorems. I will work on a generalization of the Atiyah-Singer index theorem from pseudo-differential to Fourier integral operators and on a connection of the new index theorems of Connes and Moscovici to the general index theorem for deformation quantizations. I will also work on a more general theory of characteristic classes. This should lead, in particular, to a generalization of the Chern-Simons classes from local systems to arbitrary D-modules. This, in turn, should lead to better understanding and generalization of Riemann-Roch theorems for determinants of cohomology. Another direction of my research will be the theory of modules over deformed algebra of functions on a symplectic manifold. First, I intend to define a new category of modules with some additional structure; it should be related to the Fukaya category. The former should be regarded as a local limit of the former. Next step would be to make this category non-local and therefore even more closely related to the Fukaya category.My research deals with several related topics. One is noncommutative geometry, much of it consists of the usual calculus, but carried out in such a way that the identity xy=yx is no longer valid. We refer to algebraic systems in which this is the case as noncommutative spaces. The other is deformation quantization, namely the study of the examples and structure of noncommutative spaces, rather than of laws and rules of noncommutative calculus. The word deformation refers to the fact that one obtains these noncommutative spaces by taking a usual (curved, higher-dimensional) space and changing it a little bit in noncommutative direction. (The word quantization is used because the passage from the classical to the quantum mechanics is the principal example). Yet another direction of my research is index theory, which is a discipline linking the number of solutions of systems of equations (differential, integral, etc.) to the topological complexity of underlying spaces. It is deeply related to noncommutative geometry because two operations that you can apply to a function, multiplication by x and derivation, do not commute.
建议的研究是为了回答几个问题的非交换几何,辛几何和微局部分析。特别是,我将继续我的研究指标定理。我将致力于推广的Atiyah-Singer指标定理从伪微分傅立叶积分算子和连接的新指标定理的Connes和Moscovici的一般指标定理的变形量化。我还将研究更一般的特征类理论。这应该导致,特别是,一个推广的陈-西蒙斯类从本地系统任意D-模。这反过来又会导致更好地理解和推广黎曼-罗克定理的决定因素的上同调。我的另一个研究方向将是辛流形上的变形函数代数上的模理论。首先,我打算定义一个新的带有一些附加结构的模块类别;它应该与福谷类别相关。前者应视为前者的局部界限。下一步将是使这个范畴非本地化,因此与福谷范畴的关系更加密切。一个是非交换几何,其中大部分由通常的微积分组成,但以这样一种方式进行,即恒等式xy=yx不再有效。我们把这种情况称为非交换空间的代数系统。另一个是形变量子化,即研究非对易空间的例子和结构,而不是非对易微积分的定律和规则。变形这个词指的是这样一个事实,即人们通过取一个通常的(弯曲的,高维的)空间并在非交换方向上改变它来获得这些非交换空间。(The使用量子化这个词是因为从经典力学到量子力学的过渡是主要的例子)。我的另一个研究方向是指数理论,这是一个学科联系方程组(微分,积分等)的解决方案的数量。到底层空间的拓扑复杂性。它与非对易几何有很深的联系,因为你可以应用于函数的两个运算,乘以x和求导,不对易。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Boris Tsygan其他文献

Boris Tsygan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Boris Tsygan', 18)}}的其他基金

Summer school on Noncommutative geometry
非交换几何暑期学校
  • 批准号:
    1041576
  • 财政年份:
    2010
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Standard Grant
Noncommutative geometry, microlocal analysis, index theorems and symplectic geometry
非交换几何、微局域分析、指数定理和辛几何
  • 批准号:
    0906391
  • 财政年份:
    2009
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Standard Grant
Trends in noncommutative geometry
非交换几何的趋势
  • 批准号:
    0728322
  • 财政年份:
    2007
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Standard Grant
Non commutative geometry, microlocal analysis, and symplectic geometry
非交换几何、微局域分析和辛几何
  • 批准号:
    0306624
  • 财政年份:
    2003
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Standard Grant
Noncommutative Differential Geometry of Deformations of Commutative Rings
交换环变形的非交换微分几何
  • 批准号:
    0308683
  • 财政年份:
    2002
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Standard Grant
Noncommutative Differential Geometry of Deformations of Commutative Rings
交换环变形的非交换微分几何
  • 批准号:
    9970591
  • 财政年份:
    1999
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Non-Commutative Differential Geometry of Deformations of Commutative Rings: Operations Index Theorems and Characteristic Classes
数学科学:交换环变形的非交换微分几何:运算指数定理和特征类
  • 批准号:
    9623051
  • 财政年份:
    1996
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Non-commutative Differential Geometryof Deformations of Commutative Rings: Operations Index Theorems and Characteristic Classes
数学科学:交换环变形的非交换微分几何:运算指数定理和特征类
  • 批准号:
    9307927
  • 财政年份:
    1993
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Non-Commutative Differential Geometryof the Deformations of Commutative Rings
数学科学:交换环变形的非交换微分几何
  • 批准号:
    9101817
  • 财政年份:
    1991
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
  • 批准号:
    2302262
  • 财政年份:
    2023
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
  • 批准号:
    2328867
  • 财政年份:
    2023
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
  • 批准号:
    2302263
  • 财政年份:
    2023
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Standard Grant
Categorical Invariants in Non-commutative Geometry
非交换几何中的分类不变量
  • 批准号:
    2202365
  • 财政年份:
    2022
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Standard Grant
Geometry of Polynomials, Operator-Valued Maps, Polar and Non-Commutative Convex Analysis
多项式几何、算子值映射、极坐标和非交换凸分析
  • 批准号:
    RGPIN-2020-06425
  • 财政年份:
    2022
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Discovery Grants Program - Individual
Research on Koszul AS-regular algebras from the categorical view of Non-commutative algebraic geometry and Representation theory
从非交换代数几何和表示论范畴角度研究Koszul AS-正则代数
  • 批准号:
    21K13781
  • 财政年份:
    2021
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Birational geometry and derived categories toward non-commutative birational geometry
双有理几何和非交换双有理几何的派生范畴
  • 批准号:
    21H00970
  • 财政年份:
    2021
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Geometry of Polynomials, Operator-Valued Maps, Polar and Non-Commutative Convex Analysis
多项式几何、算子值映射、极坐标和非交换凸分析
  • 批准号:
    RGPIN-2020-06425
  • 财政年份:
    2021
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Discovery Grants Program - Individual
Annual Spring Institute on Non-Commutative Geometry and Operator Algebra 2020
2020 年春季非交换几何与算子代数研究所
  • 批准号:
    2000214
  • 财政年份:
    2020
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Standard Grant
Geometry of Polynomials, Operator-Valued Maps, Polar and Non-Commutative Convex Analysis
多项式几何、算子值映射、极坐标和非交换凸分析
  • 批准号:
    RGPIN-2020-06425
  • 财政年份:
    2020
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了