Non commutative geometry, microlocal analysis, and symplectic geometry
非交换几何、微局域分析和辛几何
基本信息
- 批准号:0306624
- 负责人:
- 金额:$ 13.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this project is to extend the study of non-commutative differential geometry of deformation quantization algebras, and to apply it to symplectic geometry. A deformation quantization is a new multiplication law on an algebra of function on a manifold which depends on a formal parameter. When the value of the parameter is zero, then this product becomes the usual product of functions. All such deformation quantizations were classified by Kontsevich. The simplest examples of them arise from algebras of differential operators on manifolds. In our previous work, we computed for all deformed algebras basic invariants of non-commutative differential geometry (Hochschild and cyclic homology, etc.). We applied these results to prove generalized Atiyah-Singer index theorems. Our main tool was what we call non-commutative differential calculus, which is an extension of classical algebraic constructions with forms and multi-vectors to non-commutative setting. The new project is aimed at developing both non-commutative geometry and algebra of deformation quantization, in particular a theory of modules over deformation quantization rings, and at applying them to symplectic geometry, in particular to the Fukaya theory of Lagrangian intersections and to mirror symmetry.The main aim of this project is to develop what we call non-commutative differential calculus. By this we mean an extension of the clasical multi-variable calculus to the case when the variables no longer commute, i.e. when the value of the product is no longer independent of the order of factors. Such situations arise very naturally in mathematics and physics; in quantum mechanics, the non-commutativity expresses mathematically the uncertainty principle of Heisenberg. We intend to apply the non-commutative calculus to so called deformation quantization, a geometric setup very much motivated by quantum mechanics. Our previous work in this direction yielded new proofs and generalizations of classical theorems about solutions of partial differential equations; our new project aims at applications to geometric questions of mathematical physics, such as string theory, mirror symmetry, and Lagrangian intersections.
该项目的目的是扩展变形量化代数的非交换微分几何的研究,并将其应用于辛几何。形变量化是流形上函数代数的一种新的乘法定律,它取决于形式参数。当参数的值为零时,该乘积就成为函数的通常乘积。所有此类变形量化均由 Kontsevich 进行分类。其中最简单的例子来自流形上微分算子的代数。在我们之前的工作中,我们计算了所有变形代数的非交换微分几何的基本不变量(Hochschild 和循环同调等)。我们应用这些结果来证明广义 Atiyah-Singer 指数定理。我们的主要工具是我们所说的非交换微分微积分,它是具有形式和多向量的经典代数构造到非交换设置的扩展。新项目旨在发展非交换几何和变形量化代数,特别是变形量化环上的模理论,并将它们应用于辛几何,特别是拉格朗日交集的 Fukaya 理论和镜像对称。该项目的主要目的是发展我们所谓的非交换微分微积分。我们的意思是,将经典多变量微积分扩展到变量不再交换的情况,即乘积的值不再独立于因子的顺序。这种情况在数学和物理学中很自然地出现。在量子力学中,非交换性在数学上表达了海森堡的测不准原理。我们打算将非交换微积分应用于所谓的变形量化,这是一种很大程度上受量子力学启发的几何设置。我们之前在这个方向上的工作产生了关于偏微分方程解的经典定理的新证明和推广;我们的新项目旨在应用于数学物理的几何问题,例如弦理论、镜像对称和拉格朗日交集。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Boris Tsygan其他文献
Boris Tsygan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Boris Tsygan', 18)}}的其他基金
Summer school on Noncommutative geometry
非交换几何暑期学校
- 批准号:
1041576 - 财政年份:2010
- 资助金额:
$ 13.95万 - 项目类别:
Standard Grant
Noncommutative geometry, microlocal analysis, index theorems and symplectic geometry
非交换几何、微局域分析、指数定理和辛几何
- 批准号:
0906391 - 财政年份:2009
- 资助金额:
$ 13.95万 - 项目类别:
Standard Grant
Non Commutative Geometry, Microlocal Analysis, and Symplectic Geometry
非交换几何、微局部分析和辛几何
- 批准号:
0605030 - 财政年份:2006
- 资助金额:
$ 13.95万 - 项目类别:
Standard Grant
Noncommutative Differential Geometry of Deformations of Commutative Rings
交换环变形的非交换微分几何
- 批准号:
0308683 - 财政年份:2002
- 资助金额:
$ 13.95万 - 项目类别:
Standard Grant
Noncommutative Differential Geometry of Deformations of Commutative Rings
交换环变形的非交换微分几何
- 批准号:
9970591 - 财政年份:1999
- 资助金额:
$ 13.95万 - 项目类别:
Standard Grant
Mathematical Sciences: Non-Commutative Differential Geometry of Deformations of Commutative Rings: Operations Index Theorems and Characteristic Classes
数学科学:交换环变形的非交换微分几何:运算指数定理和特征类
- 批准号:
9623051 - 财政年份:1996
- 资助金额:
$ 13.95万 - 项目类别:
Standard Grant
Mathematical Sciences: Non-commutative Differential Geometryof Deformations of Commutative Rings: Operations Index Theorems and Characteristic Classes
数学科学:交换环变形的非交换微分几何:运算指数定理和特征类
- 批准号:
9307927 - 财政年份:1993
- 资助金额:
$ 13.95万 - 项目类别:
Continuing Grant
Mathematical Sciences: Non-Commutative Differential Geometryof the Deformations of Commutative Rings
数学科学:交换环变形的非交换微分几何
- 批准号:
9101817 - 财政年份:1991
- 资助金额:
$ 13.95万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
- 批准号:
2302262 - 财政年份:2023
- 资助金额:
$ 13.95万 - 项目类别:
Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
$ 13.95万 - 项目类别:
Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
- 批准号:
2302263 - 财政年份:2023
- 资助金额:
$ 13.95万 - 项目类别:
Standard Grant
Categorical Invariants in Non-commutative Geometry
非交换几何中的分类不变量
- 批准号:
2202365 - 财政年份:2022
- 资助金额:
$ 13.95万 - 项目类别:
Standard Grant
Geometry of Polynomials, Operator-Valued Maps, Polar and Non-Commutative Convex Analysis
多项式几何、算子值映射、极坐标和非交换凸分析
- 批准号:
RGPIN-2020-06425 - 财政年份:2022
- 资助金额:
$ 13.95万 - 项目类别:
Discovery Grants Program - Individual
Research on Koszul AS-regular algebras from the categorical view of Non-commutative algebraic geometry and Representation theory
从非交换代数几何和表示论范畴角度研究Koszul AS-正则代数
- 批准号:
21K13781 - 财政年份:2021
- 资助金额:
$ 13.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Birational geometry and derived categories toward non-commutative birational geometry
双有理几何和非交换双有理几何的派生范畴
- 批准号:
21H00970 - 财政年份:2021
- 资助金额:
$ 13.95万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometry of Polynomials, Operator-Valued Maps, Polar and Non-Commutative Convex Analysis
多项式几何、算子值映射、极坐标和非交换凸分析
- 批准号:
RGPIN-2020-06425 - 财政年份:2021
- 资助金额:
$ 13.95万 - 项目类别:
Discovery Grants Program - Individual
Annual Spring Institute on Non-Commutative Geometry and Operator Algebra 2020
2020 年春季非交换几何与算子代数研究所
- 批准号:
2000214 - 财政年份:2020
- 资助金额:
$ 13.95万 - 项目类别:
Standard Grant
Geometry of Polynomials, Operator-Valued Maps, Polar and Non-Commutative Convex Analysis
多项式几何、算子值映射、极坐标和非交换凸分析
- 批准号:
RGPIN-2020-06425 - 财政年份:2020
- 资助金额:
$ 13.95万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




