Trends in noncommutative geometry

非交换几何的趋势

基本信息

  • 批准号:
    0728322
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2008-08-31
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS-0728322Principal Investigator: Boris Tsygan, Dmitry TamarkinThis award provides partial support for a conference at the endof the emphasis year on noncommutative geometry at NorthwesternUniversity. Its aim was to explore the interaction betweenseveral directions in noncommutative geometry: index theorems,noncommutative calculus and operads, relations to mathematicalphysics, to number theory, and to the geometric Langlandsprogram. An important objective was to highlight the subjectsthat are strong in the Chicago area (algebraic geometry, motives,microlocal analysis, representation theory, geometric Langlandsprogram, mirror symmetry) and investigate their links to theworks in what is more traditionally considered noncommutativegeometry, and vice versa. For example, an algebraic approach toloop spaces that is used in the geometric Langlands program andin representation theory of real groups was compared to thetopological string theory which is related to algebraic topologyand mathematical physics, as well as to an approach to therepresentation theory of p-adic groups. A relation wasestablished between these subjects, in particular stringtopology, and current research on motives. Several approaches toa conjectural relationship between noncommutative geometry andmirror symmetry were presented.Noncommutative geometry is an extension of the classical geometryto "spaces" in which coordinates x, y, etc. no longer commute,i.e. where the identity xy=yx is not necessarily true. Such"spaces" abound in mathematics and physics. For example,noncommutativity is the mathematical manifestation of theHeisenberg uncertainty principle in quantum mechanics: if xstands for a position of a particle and y for its momentum, youcannot know precise values of both x and y. In a moremathematical context, noncommutativity is an expression of thefact that, if you apply two transformations to an object, theresult depends on the order in which you do it. Mathematicalsituations where noncommutativity occurs have been known for along time but the idea to treat them as "noncommutative spaces"and to study them by geometric methods is relatively recent. Oneof the successes of this approach is a radical simplification ofthe standard model in quantum field theory by means of allowingthe space to be noncommutative. The aim of the conference was tocompare several approaches to noncommutative geometry, as well asits links to other areas of mathematics and physics. You can findmore information on the conference website athttp://www.math.northwestern.edu/~tsygan/conf
摘要奖项:DMS-0728322 首席研究员:Boris Tsygan、Dmitry Tamarkin 该奖项为西北大学非交换几何重点年末的会议提供部分支持。其目的是探索非交换几何中几个方向之间的相互作用:指数定理、非交换微积分和运算、与数学物理、数论以及几何朗兰兹纲领的关系。一个重要的目标是突出芝加哥地区的优势学科(代数几何、动机、微局域分析、表示论、几何朗兰兹纲领、镜像对称),并研究它们与传统上被认为是非交换几何的著作之间的联系,反之亦然。例如,将几何朗兰兹纲领和实群表示论中使用的环空间代数方法与与代数拓扑和数学物理相关的拓扑弦理论以及 p 进群表示论方法进行了比较。这些学科(特别是弦拓扑学)与当前动机研究之间建立了联系。提出了几种非交换几何与镜像对称之间猜想关系的方法。非交换几何是经典几何对坐标 x、y 等不再交换的“空间”的扩展,即其中恒等式 xy=yx 不一定为真。这样的“空间”在数学和物理学中比比皆是。例如,非交换性是量子力学中海森堡测不准原理的数学表现:如果 x 代表粒子的位置,y 代表粒子的动量,那么你就无法知道 x 和 y 的精确值。在更数学化的背景下,非交换性表达了这样一个事实:如果你对一个对象应用两次变换,结果取决于你进行变换的顺序。出现非交换性的数学情况早已为人所知,但将它们视为“非交换空间”并通过几何方法研究它们的想法相对较新。这种方法的成功之一是通过允许空间不可交换来彻底简化量子场论中的标准模型。会议的目的是比较非交换几何的几种方法,以及它与数学和物理其他领域的联系。您可以在会议网站上找到更多信息:http://www.math.northwestern.edu/~tsygan/conf

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Boris Tsygan其他文献

Boris Tsygan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Boris Tsygan', 18)}}的其他基金

Summer school on Noncommutative geometry
非交换几何暑期学校
  • 批准号:
    1041576
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Noncommutative geometry, microlocal analysis, index theorems and symplectic geometry
非交换几何、微局域分析、指数定理和辛几何
  • 批准号:
    0906391
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Non Commutative Geometry, Microlocal Analysis, and Symplectic Geometry
非交换几何、微局部分析和辛几何
  • 批准号:
    0605030
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Non commutative geometry, microlocal analysis, and symplectic geometry
非交换几何、微局域分析和辛几何
  • 批准号:
    0306624
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Noncommutative Differential Geometry of Deformations of Commutative Rings
交换环变形的非交换微分几何
  • 批准号:
    0308683
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Noncommutative Differential Geometry of Deformations of Commutative Rings
交换环变形的非交换微分几何
  • 批准号:
    9970591
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Non-Commutative Differential Geometry of Deformations of Commutative Rings: Operations Index Theorems and Characteristic Classes
数学科学:交换环变形的非交换微分几何:运算指数定理和特征类
  • 批准号:
    9623051
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Non-commutative Differential Geometryof Deformations of Commutative Rings: Operations Index Theorems and Characteristic Classes
数学科学:交换环变形的非交换微分几何:运算指数定理和特征类
  • 批准号:
    9307927
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Non-Commutative Differential Geometryof the Deformations of Commutative Rings
数学科学:交换环变形的非交换微分几何
  • 批准号:
    9101817
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Noncommutative Geometry and Analysis
会议:非交换几何与分析
  • 批准号:
    2350508
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
LEAPS-MPS: Noncommutative Geometry and Topology of Quantum Metrics
LEAPS-MPS:量子度量的非交换几何和拓扑
  • 批准号:
    2316892
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Applications of Higher Algebraic Structures in Noncommutative Geometry
高等代数结构在非交换几何中的应用
  • 批准号:
    2302447
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Noncommutative Algebraic Geometry
非交换代数几何
  • 批准号:
    RGPIN-2017-04623
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
The geometry of orbits of noncommutative Hermann actions
非交换赫尔曼作用的轨道几何
  • 批准号:
    22K03285
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Principal bundles in noncommutative differential geometry
非交换微分几何中的主丛
  • 批准号:
    RGPIN-2017-04249
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Type III Noncommutative Geometry and KK-theory
III 类非交换几何和 KK 理论
  • 批准号:
    RGPIN-2017-04718
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Interactions between noncommutative geometry and quantum information
非交换几何与量子信息之间的相互作用
  • 批准号:
    RGPIN-2022-03373
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Geodesics in noncommutative Riemannian geometry
非交换黎曼几何中的测地线
  • 批准号:
    571975-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Conference: Facets of Noncommutative Geometry
会议:非交换几何的方面
  • 批准号:
    2203450
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了