Variational Data Assimilatin with the NMC Spectral Model

用 NMC 谱模型进行变分数据同化

基本信息

  • 批准号:
    9102851
  • 负责人:
  • 金额:
    $ 31.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1991
  • 资助国家:
    美国
  • 起止时间:
    1991-06-01 至 1994-12-31
  • 项目状态:
    已结题

项目摘要

One tactic for potential improvement of Numerical Weather Forecasting (NWF) is the timely incorporation of large bodies of new observational data. These will become available from networks of Doppler radars and other automated instrumental systems that are to come on line throughout the remainder of this decade. The oppor- tunity will be enhanced with the concurrent growth of computer data-handling power. Also, and just as important, will be recent developments in applied mathematics, particularly in the theory of optimal control. By the mathematical analysis of the equations (or computational algorithms) governing the behaviour of evolving systems, it is possible to identify key values whose adjustment will minimize undesirable properties of the system. However, the analysis becomes extremely difficult as the governing equations become complex, and even if it is successfully carried out, there remains the problem of implementing its results quickly and cheaply enough to be useful in practice. In the case of NWF, the procedure can be applied to the problem of adjusting the initial meteorologi- cal fields that start a forecast so that the differences between the predictions of a numerical model and measurements coming in early in the forecast period are minimized. This is done by making repeated trial predictions for a short period, while simulteneously and repeatedly fine tuning the initial fields until the desired minimum error is found. The adjusted initial field is then used to carry out the prediction over the full forecast period. The model of concern to the PIs is the workhorse operational weather prediction model of the US National Meteorological Center (NMC). In a grant just ending under the NSF-NMC Joint Program in NWF they have successfuly constructed a set of algorithms (the "adjoint model") that complement the NMC computer program in such a way that by alternately using the adjoint and prediction models during the trial prediction period the number of iterations can be significantly reduced. This has been characterized by the Director of Development of NMC as a "most significant achievement". The proposed work is to exploit the breakthrough by further analysis of the properties of the two models in order to achieve successful operational implementation of the theoretical findings. This could enhance the accuracy of the weather forecasts to levels equal to or exceeding those achieved at the European Center for Medium Range Weather Forecasting, and increase the return on the national investment in the next-generation weather observing network.
数值天气预报(NWF)潜在改进的一个策略是及时纳入大量新的观测数据。这些将通过多普勒雷达网络和其他自动化仪器系统提供,这些系统将在本十年的剩余时间内投入使用。随着计算机数据处理能力的同时增长,机会将会增加。此外,同样重要的是应用数学的最新发展,特别是最优控制理论。通过对控制演化系统行为的方程(或计算算法)的数学分析,可以确定其调整将使系统的不良特性最小化的关键值。然而,随着控制方程变得复杂,分析变得极其困难,即使成功地进行了分析,也存在着快速和廉价地实施其结果以在实践中有用的问题。在数值预报的情况下,该方法可应用于调整开始预报的初始气象场的问题,从而使数值模式的预报与预报初期的实测值之间的差异最小化。这是通过在短时间内进行重复尝试预测来实现的,同时反复微调初始场,直到找到所需的最小误差。然后使用调整后的初始场在整个预测期内进行预测。PIS关注的模式是美国国家气象中心(NMC)的主要业务天气预报模式。在NSF-NMC联合计划下刚刚结束的一项拨款中,他们成功地构建了一套算法(“伴随模型”),以这样一种方式补充NMC计算机程序,即通过在试验预测期间交替使用伴随模型和预测模型,可以显著减少迭代次数。NMC的发展主任称这是一项“最重大的成就”。建议的工作是通过进一步分析这两种模型的特性来挖掘突破口,以实现理论研究成果的成功实施。这可以将天气预报的准确性提高到等于或超过欧洲中期天气预报中心的水平,并增加国家对下一代天气观测网络的投资回报。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ionel Navon其他文献

Ionel Navon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ionel Navon', 18)}}的其他基金

Collaborative Research: CMG--Ensemble Data Assimilation for Nonlinear and Nondifferentiable Problems in Geosciences
合作研究:CMG——地球科学中非线性和不可微问题的集合数据同化
  • 批准号:
    0931198
  • 财政年份:
    2009
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Solution of Inverse Problems with Adaptive Models
合作研究:用自适应模型解决反问题
  • 批准号:
    0635162
  • 财政年份:
    2006
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Standard Grant
Collaborative Research: CMG: Ensemble Data Assimilation Based on Control Theory
合作研究:CMG:基于控制理论的集合数据同化
  • 批准号:
    0327818
  • 财政年份:
    2003
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Standard Grant
A System of Data Assimilation Based on Parallel Second Order Adjoint and Reduced Rank Kalman-Filter Methods
基于并行二阶伴随和降阶卡尔曼滤波方法的数据同化系统
  • 批准号:
    0201808
  • 财政年份:
    2002
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Continuing Grant
Incremental 4-D Variational Data Assimilation, Efficient Optimization and Parameter Estimation Techniques
增量 4-D 变分数据同化、高效优化和参数估计技术
  • 批准号:
    9731472
  • 财政年份:
    1998
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Continuing Grant
4-D Variational Data Assimilation and Parameter Estimation with the Full Physics NMC Spectral Model
使用完整物理 NMC 谱模型进行 4-D 变分数据同化和参数估计
  • 批准号:
    9413050
  • 财政年份:
    1994
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Continuing Grant
U.S.-France Cooperative Research: Variational Data Assimi- lation Using Optimal Control Methods
美法合作研究:使用最优控制方法进行变分数据同化
  • 批准号:
    9016234
  • 财政年份:
    1991
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Standard Grant
Determination of the Adjoint Model of the NMC Global and NGMModels and Their Application to 4-D Data Assimilations
NMC Global和NGM模型伴随模型的确定及其在4维数据同化中的应用
  • 批准号:
    8806553
  • 财政年份:
    1988
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Dark Data from the White Continent: New Light on Five Decades of Vertebrate Paleontology Collections from the Triassic Fremouw Formation of Antarctica
来自白色大陆的暗数据:对南极洲三叠纪 Fremouw 组的五个十年的脊椎动物古生物学收藏的新认识
  • 批准号:
    2313242
  • 财政年份:
    2024
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Standard Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Wind-induced noise in the prospective seismic data measured in the Venusian surface environment
RII Track-4:@NASA:金星表面环境中测量的预期地震数据中的风致噪声
  • 批准号:
    2327422
  • 财政年份:
    2024
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Standard Grant
EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
  • 批准号:
    2412195
  • 财政年份:
    2024
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Standard Grant
Research Infrastructure: CC* Data Storage: Foundational Campus Research Storage for Digital Transformation
研究基础设施:CC* 数据存储:数字化转型的基础校园研究存储
  • 批准号:
    2346636
  • 财政年份:
    2024
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Standard Grant
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
  • 批准号:
    2346707
  • 财政年份:
    2024
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了