Collaborative Research: CMG--Ensemble Data Assimilation for Nonlinear and Nondifferentiable Problems in Geosciences

合作研究:CMG——地球科学中非线性和不可微问题的集合数据同化

基本信息

  • 批准号:
    0931198
  • 负责人:
  • 金额:
    $ 28.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

Data assimilation is an essential component of attempts to observe and predict the state of the atmosphere, defined as the values of temperature, pressure, humidity, wind speed, and other variables at specific locations. A data assimilation system typically has two components:1) a set of observations which are imperfect, unevenly distributed in space and time, and related to the state in complex ways (e.g. satellites sense radiation which is indirectly related to temperature and moisture, radar returns are indirectly related to precipitation); and 2) a complex and imperfect forecast model, which provides a "first guess" of the atmospheric state. The goal of data assimilation is to optimally combine the model first guess and the observations to produce the best possible representation of the state, accompanied by an estimate of the state uncertainty caused by the limitations of the observations and the forecast model. Ensemble data assimilation (EnsDA) is a data assimilation method in which an ensemble of forecasts is used in each assimilation cycle, so that differences among the forecast ensemble members provide a means of expressing the probabilistic nature of the model-generated first guess. For example, a single forecast will predict either rain or no rain at a given location, whereas an ensemble of forecasts can estimate the probability of rainfall.Due to the complexity of atmospheric variability and the indirect ways in which observations are related to the state, EnsDA methods usually require simplifying assumptions in order to be practically useful. Among the common simplifying assumptions are 1) that the observations can be related to the state through simple linear functions; and 2) that the atmosphere evolves smoothly, so that the atmospheric state can be treated as varying in space and time in a smooth, differentiable way. While convenient, these assumptions are not physically justifiable, and the research in this proposal is an attempt to find new EnsDA methods which do not rely on these assumptions. The work begins by quantifying the error in the estimated atmospheric state using a "cost function", which is minimized to produce the assimilated state. Nonlinearity and nondifferentiability in the evolution of the atmospheric state and in state-observation relationships leads to nonlinearity and nondifferentiability in the cost function. This research addresses the lack of smoothness in the cost function by 1) evaluating nondifferentiable cost function minimization methods suitable for EnsDA; 2) examining the value of hybrid ensemble data assimilation methods for nonlinear and nondifferentiable applications; and 3) developing and evaluating a nonlinear and nondifferentiable EnsDA method designed to quantify uncertainty in realistic high-dimensional geosciences applications.The research is intended to find better ways to use existing data and models to understand and predict the behavior of the atmosphere. These efforts will ultimately lead to better forecasts of severe weather which will benefit society. In addition, EnsDA techniques developed for the atmosphere will be applicable to the ocean and to coupled atmosphere-ocean models used to anticipate climate change. The grant will also contribute to the training of the next generation of scientists, by funding the education and training of a graduate student.
数据同化是观测和预测大气状态的重要组成部分,大气状态被定义为特定地点的温度、压力、湿度、风速和其他变量的值。数据同化系统通常有两个组成部分:1)一组不完善的、在空间和时间上分布不均的、以复杂方式与状态相关的观测数据(例如,卫星感测辐射与温度和湿度间接相关,雷达回波与降水间接相关);2)一个复杂而不完善的预报模式,它提供了对大气状态的“初步猜测”。数据同化的目标是将模型的第一次猜测和观测结果最佳地结合起来,以产生状态的最佳表示,同时对由观测和预测模型的局限性引起的状态不确定性进行估计。集合数据同化(EnsDA)是一种数据同化方法,其中在每个同化周期中使用预测集合,因此预测集合成员之间的差异提供了一种表达模型生成的第一次猜测的概率性质的方法。例如,单个预报将预测给定地点的下雨或不下雨,而综合预报可以估计降雨的概率。由于大气变率的复杂性和观测与状态的间接关系,EnsDA方法通常需要简化假设,以便实际使用。常见的简化假设有:1)观测值可以通过简单的线性函数与状态相关;2)大气的演化是平滑的,因此大气状态可以被视为在空间和时间上以平滑的、可微的方式变化。虽然方便,但这些假设在物理上是不合理的,本提案的研究是试图找到不依赖于这些假设的新的EnsDA方法。这项工作首先使用“成本函数”量化估计大气状态的误差,将其最小化以产生同化状态。大气状态演化和状态-观测关系的非线性和不可微性导致了代价函数的非线性和不可微性。本研究针对代价函数缺乏平滑性的问题,1)评估了适合于EnsDA的不可微代价函数最小化方法;2)检验混合集成数据同化方法在非线性和不可微应用中的价值;3)开发和评估一种非线性不可微的EnsDA方法,旨在量化现实高维地球科学应用中的不确定性。这项研究的目的是找到更好的方法来利用现有的数据和模型来理解和预测大气的行为。这些努力最终将导致更好的恶劣天气预报,这将造福社会。此外,为大气开发的EnsDA技术将适用于海洋和用于预测气候变化的耦合大气-海洋模式。该基金还将通过资助一名研究生的教育和培训,为培养下一代科学家做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ionel Navon其他文献

Ionel Navon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ionel Navon', 18)}}的其他基金

Collaborative Research: Solution of Inverse Problems with Adaptive Models
合作研究:用自适应模型解决反问题
  • 批准号:
    0635162
  • 财政年份:
    2006
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Standard Grant
Collaborative Research: CMG: Ensemble Data Assimilation Based on Control Theory
合作研究:CMG:基于控制理论的集合数据同化
  • 批准号:
    0327818
  • 财政年份:
    2003
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Standard Grant
A System of Data Assimilation Based on Parallel Second Order Adjoint and Reduced Rank Kalman-Filter Methods
基于并行二阶伴随和降阶卡尔曼滤波方法的数据同化系统
  • 批准号:
    0201808
  • 财政年份:
    2002
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Continuing Grant
Incremental 4-D Variational Data Assimilation, Efficient Optimization and Parameter Estimation Techniques
增量 4-D 变分数据同化、高效优化和参数估计技术
  • 批准号:
    9731472
  • 财政年份:
    1998
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Continuing Grant
4-D Variational Data Assimilation and Parameter Estimation with the Full Physics NMC Spectral Model
使用完整物理 NMC 谱模型进行 4-D 变分数据同化和参数估计
  • 批准号:
    9413050
  • 财政年份:
    1994
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Continuing Grant
Variational Data Assimilatin with the NMC Spectral Model
用 NMC 谱模型进行变分数据同化
  • 批准号:
    9102851
  • 财政年份:
    1991
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Continuing Grant
U.S.-France Cooperative Research: Variational Data Assimi- lation Using Optimal Control Methods
美法合作研究:使用最优控制方法进行变分数据同化
  • 批准号:
    9016234
  • 财政年份:
    1991
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Standard Grant
Determination of the Adjoint Model of the NMC Global and NGMModels and Their Application to 4-D Data Assimilations
NMC Global和NGM模型伴随模型的确定及其在4维数据同化中的应用
  • 批准号:
    8806553
  • 财政年份:
    1988
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

CMG Collaborative Research: Tempered Stable Models for Preasymptotic Pollutant Transport in Natural Media
CMG 合作研究:自然介质中渐进前污染物传输的稳定模型
  • 批准号:
    1460319
  • 财政年份:
    2014
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Standard Grant
Collaborative Research: CMG--Analysis and Modeling of Rotating Stratified Flows
合作研究:CMG--旋转层流分析与建模
  • 批准号:
    1025166
  • 财政年份:
    2010
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Standard Grant
CMG Collaborative Research: Tempered Stable Models for Preasymptotic Pollutant Transport in Natural Media
CMG 合作研究:自然介质中渐进前污染物传输的稳定模型
  • 批准号:
    1025417
  • 财政年份:
    2010
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Standard Grant
CMG COLLABORATIVE RESEARCH: Quantum Monte Carlo Calculations of Deep Earth Materials
CMG 合作研究:地球深部材料的量子蒙特卡罗计算
  • 批准号:
    1024936
  • 财政年份:
    2010
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Standard Grant
CMG Collaborative Research: Non-assimilation Fusion of Data and Models
CMG协同研究:数据与模型的非同化融合
  • 批准号:
    1025453
  • 财政年份:
    2010
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Standard Grant
CMG Collaborative Research: Probabilistic Stratigraphic Alignment and Dating of Paleoclimate Data
CMG 合作研究:概率地层排列和古气候数据测年
  • 批准号:
    1025438
  • 财政年份:
    2010
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Continuing Grant
CMG COLLABORATIVE RESEARCH: Novel Mathematical Strategies for Superparameterization in Atmospheric and Oceanic Flows
CMG 合作研究:大气和海洋流超参数化的新数学策略
  • 批准号:
    1025468
  • 财政年份:
    2010
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Standard Grant
CMG Collaborative Research: Simulation of Wave-Current Interaction Using Novel, Coupled Non-Phase and Phase Resolving Wave and Current Models
CMG 合作研究:使用新型耦合非相位和相位解析波流模型模拟波流相互作用
  • 批准号:
    1025527
  • 财政年份:
    2010
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Standard Grant
Collaborative Research: CMG--Analysis and Modeling of Rotating Stratified Flows
合作研究:CMG--旋转层流分析与建模
  • 批准号:
    1025188
  • 财政年份:
    2010
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Standard Grant
CMG COLLABORATIVE RESEARCH: Nonlinear elastic-wave inverse scattering and tomography- from cracks to mantle convection
CMG 合作研究:非线性弹性波逆散射和断层扫描 - 从裂缝到地幔对流
  • 批准号:
    1025302
  • 财政年份:
    2010
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了