Mathematical Sciences: K-Theory and Cyclic Cohomology Related to Operator Algebras

数学科学:与算子代数相关的 K 理论和循环上同调

基本信息

  • 批准号:
    9104513
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1991
  • 资助国家:
    美国
  • 起止时间:
    1991-07-01 至 1994-06-30
  • 项目状态:
    已结题

项目摘要

Professor Natsume's project is in the area of K-theory and cyclic cohomology in noncommutative geometry. He will study operator algebras arising from geometry. Solutions to the problems he poses will illuminate the area of interaction of the two fields. Some of the specific problems he will consider are: (i) determine the structure of the group of diffeomorphisms of a twisted group C*-algebra of the fundamental group of a closed Riemann surface, (ii) determine whether the Baum-Connes conjecture is valid for codimension one foliations which are almost without holonomy, (iii) generalize the vanishing theorem of the Godbillon-Vey map in analytical K-theory to higher codimension cases, and (iv) establish a Fourier inversion formula for the canonical cyclic cocycle of a simply connected solvable Lie group. The general area of this project is operator algebras and geometry. Operators can be thought of as infinite matrices of complex numbers. Special types of operators are often put together in an algebra, naturally called an operator algebra. Among other problems, Professor Natsume will study operator algebras which arise in the analysis of closed surfaces.
Natalie教授的项目是在K理论领域, 非交换几何中的循环上同调。 他将研究 由几何学产生的算子代数。 解决问题的方法 他的姿势将照亮这两个领域的相互作用。 他将考虑的一些具体问题是:(一)确定 扭群的双同态群的结构 闭黎曼曲面基本群的C *-代数, (ii)判断Baum-Connes猜想是否成立 余维一叶理,几乎没有holonomy,(iii) 推广了Godbillon-Vey映射的消失定理, 分析K-理论更高的余维情况下,和(iv)建立 的正则循环上循环的傅里叶逆公式 单连通可解李群 这个项目的一般领域是算子代数和 几何 运算符可以被认为是 复数 特殊类型的运营商经常被放在一起 在代数中,自然称为算子代数。 除其他 问题,教授Natalie将研究算子代数, 在分析封闭曲面时出现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Toshikazu Natsume其他文献

Euler characteristic and the class of unit inK-theory
  • DOI:
    10.1007/bf01161971
  • 发表时间:
    1987-06-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Toshikazu Natsume
  • 通讯作者:
    Toshikazu Natsume
Asymptotic solutions for large time of Hamilton-Jacobi equations in Euclidean n space, Ann
欧几里德 n 空间中大时间 Hamilton-Jacobi 方程的渐近解,Ann

Toshikazu Natsume的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Toshikazu Natsume', 18)}}的其他基金

Mathematical Sciences: K-Theory and Cyclic Cohomology Related to Operator Algebras
数学科学:与算子代数相关的 K 理论和循环上同调
  • 批准号:
    8901923
  • 财政年份:
    1989
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Continuing Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

New Trends in Localized Patterns in Partial Differential Equations: Mathematical Theory and Applications to Physics, Biology, and the Social Sciences
偏微分方程定域模式的新趋势:数学理论及其在物理、生物学和社会科学中的应用
  • 批准号:
    2013192
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
CBMS Conference: Topological and Geometric Methods in Quantum Field Theory NSF-CBMS Regional Conference in the Mathematical Sciences
CBMS 会议:量子场论中的拓扑和几何方法 NSF-CBMS 数学科学区域会议
  • 批准号:
    1642636
  • 财政年份:
    2016
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences -- Inverse Scattering Theory for Transmission Eigenvalues -- May 27-May 31, 2014
NSF/CBMS 数学科学区域会议 -- 传输特征值的逆散射理论 -- 2014 年 5 月 27 日至 5 月 31 日
  • 批准号:
    1347475
  • 财政年份:
    2014
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Exploratory Experimentation and Computation in the Mathematical Sciences: Theory and Practice
数学科学中的探索性实验和计算:理论与实践
  • 批准号:
    DP140101417
  • 财政年份:
    2014
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Projects
Mathematical Sciences: Geometric methods in the representation theory of affine Hecke algebras, finite reductive groups and character sheaves
数学科学:仿射 Hecke 代数、有限约简群和特征轮表示论中的几何方法
  • 批准号:
    1303060
  • 财政年份:
    2013
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Continuing Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Hodge Theory, Complex Geometry, and Representation Theory
NSF/CBMS 数学科学区域会议 - 霍奇理论、复几何和表示论
  • 批准号:
    1137952
  • 财政年份:
    2012
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
CBMS Regional Conference in the Mathematical Sciences - "Small Deviation Probabilities: Theory and Applications"
CBMS 数学科学区域会议 - “小偏差概率:理论与应用”
  • 批准号:
    1137804
  • 财政年份:
    2011
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences-Deformation Theory of Algebras and Modules- May 16-20, 2011
NSF/CBMS 数学科学区域会议 - 代数和模的变形理论 - 2011 年 5 月 16-20 日
  • 批准号:
    1040647
  • 财政年份:
    2011
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Bayesian Nonparametric Statistical Methods: Theory and Applications - Summer 2010
CBMS 数学科学区域会议 - 贝叶斯非参数统计方法:理论与应用 - 2010 年夏季
  • 批准号:
    0938769
  • 财政年份:
    2010
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
NSF/CBMS Research Conference in the Mathematical Sciences - "Ergodic Methods in the Theory of Fractals" - "6/18/11 - 06/23/11"
NSF/CBMS 数学科学研究会议 - “分形理论中的遍历方法” - “2011 年 6 月 18 日 - 2011 年 6 月 23 日”
  • 批准号:
    1040754
  • 财政年份:
    2010
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了