Mathematical Sciences: Numerical Analysis and Computation ofInvariant Manifolds
数学科学:不变流形的数值分析与计算
基本信息
- 批准号:9107612
- 负责人:
- 金额:$ 7.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1991
- 资助国家:美国
- 起止时间:1991-08-01 至 1995-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator undertakes the analysis and implementation of numerical methods for the computation of invariant manifolds of dynamical systems and of invariant curves of maps. A feature of this work is to implement certain coordinate changes that will greatly extend the applicability of the algorithms. In most applications, the dynamical systems depend on one or more parameters; then the determination of suitable coordinates will be combined with the idea of path following. As long as the manifolds deform smoothly when system parameters change, the proposed methods will permit following the manifolds computationally. A longer-term goal is to study bifurcations of invariant manifolds numerically, in particular the breakdown of tori. It is expected that the region of breakdown will be characterized numerically by several turning points of the discrete solution branch, and that the number of turning points increases as the meshsize is refined. The proposed research will point the way towards the development of efficient algorithms for the computations of invariant manifolds, and will provide a valuable tool for the study of dynamical systems. Nonlinear dynamical systems play an important role in many areas of the applied sciences and of engineering and technology. For example, they are used to model flows around airplanes and submarines, vibrations of engines, currents in electrical networks, and blood flow in the heart. All these systems depend on parameters, which can partially be controlled or monitored. A practical problem of main importance is to predict the critical values of parameters, for which qualitative changes of the dynamical systems occur. These changes are called bifurcations. For example, a long-outstanding problem is to predict the transition from laminar to turbulent flow. Similarly, a vibrating structure can bifurcate from quasiperiodic to chaotic motion; the latter is unpredictable and might lead to the breakdown of the structure. The behavior of a dynamical system is often characterized by its properties on an invariant manifold. This project will develop numerical software to compute invariant manifolds and to follow them computationally as system parameters change. Important cases are given by invariant tori, which correspond to quasiperiodic (predictable) motion; breakdown of the tori corresponds to the transition to chaotic (unpredictable) motion. With algorithms developed in this work, one will be able to compute values for bifurcation parameters, i.e., one can predict parameter values for which major qualitative changes of the dynamical system will occur. The algorithms will be tested on systems of coupled oscillators and vibrating mechanical structures, but they will apply to other areas of the applied sciences where dynamical systems are used for modelling.
主要研究人员负责动力系统不变流形和映射不变曲线计算的数值方法的分析和实现。这项工作的一个特点是实现了某些坐标变化,这将极大地扩展算法的适用性。在大多数应用中,动力系统依赖于一个或多个参数;然后,确定合适的坐标将与路径跟踪的思想相结合。只要流形在系统参数变化时平稳变形,所提出的方法就可以在计算上跟踪流形。一个较长期的目标是用数值方法研究不变流形的分支,特别是环面的破裂。预计击穿区域将由离散解分支的几个转折点来数值表征,并且转折点的数量随着网格尺寸的细化而增加。所提出的研究将为发展计算不变流形的有效算法指明方向,并将为动力系统的研究提供一个有价值的工具。非线性动力系统在应用科学和工程技术的许多领域都有着重要的作用。例如,它们被用来对飞机和潜艇周围的流动、发动机的振动、电力网络中的电流以及心脏中的血液流动进行建模。所有这些系统都依赖于参数,这些参数可以部分控制或监控。一个重要的实际问题是预测参数的临界值,对于临界值,动力系统会发生质的变化。这些变化被称为分叉。例如,一个长期悬而未决的问题是预测从层流到湍流的转变。类似地,振动结构可以从准周期运动分叉到混沌运动;后者是不可预测的,可能会导致结构的崩溃。动力系统的行为通常由它在不变流形上的性质来刻画。这个项目将开发数值软件来计算不变流形,并随着系统参数的变化进行计算。重要的情况由不变环面给出,它对应于准周期(可预测)运动;环面破裂对应于向混沌(不可预测)运动的转变。利用本工作开发的算法,可以计算分叉参数的值,即可以预测动力系统将发生重大质变的参数值。这些算法将在耦合振荡器和振动机械结构的系统上进行测试,但它们将适用于使用动力系统进行建模的其他应用科学领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jens Lorenz其他文献
Adaptive data distribution for concurrent continuation
- DOI:
10.1007/bf01396229 - 发表时间:
1992-12-01 - 期刊:
- 影响因子:2.200
- 作者:
Eric F. Van de Velde;Jens Lorenz - 通讯作者:
Jens Lorenz
Stability of Viscous Profiles: Proofs Via Dichotomies
- DOI:
10.1007/s10884-005-9003-0 - 发表时间:
2006-03-07 - 期刊:
- 影响因子:1.300
- 作者:
Wolf-Jürgen Beyn;Jens Lorenz - 通讯作者:
Jens Lorenz
Continuous spectra and numerical eigenvalues
- DOI:
10.1016/j.mcm.2011.06.037 - 发表时间:
2011-12-01 - 期刊:
- 影响因子:
- 作者:
Oksana Guba;Jens Lorenz - 通讯作者:
Jens Lorenz
Inverse monotonicity and difference schemes of higher order. A summary for two-point boundary value problems
- DOI:
10.1007/bf02189843 - 发表时间:
1979-12-01 - 期刊:
- 影响因子:0.700
- 作者:
Erich Bohl;Jens Lorenz - 通讯作者:
Jens Lorenz
Zur Inversmonotonie diskreter Probleme
离散问题的逆单调性
- DOI:
10.1007/bf01396643 - 发表时间:
1977-06-01 - 期刊:
- 影响因子:2.200
- 作者:
Jens Lorenz - 通讯作者:
Jens Lorenz
Jens Lorenz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jens Lorenz', 18)}}的其他基金
Mathematical Sciences: Computation and Analysis of Invariant Manifolds and Their Bifurcations
数学科学:不变流形及其分岔的计算与分析
- 批准号:
9404124 - 财政年份:1995
- 资助金额:
$ 7.42万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
CBMS Regional Conference in the Mathematical Sciences--Recent Advances in the Numerical Approximation of Stochastic Partial Differential Equations
CBMS数学科学区域会议--随机偏微分方程数值逼近的最新进展
- 批准号:
0938235 - 财政年份:2010
- 资助金额:
$ 7.42万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Numerical Methods for Nonlinear Elliptic Equations - Spring 2007
CBMS 数学科学区域会议 - 非线性椭圆方程的数值方法 - 2007 年春季
- 批准号:
0630571 - 财政年份:2007
- 资助金额:
$ 7.42万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - "Mathematical and Numerical Treatment of Fluid Flow and Transport in Porous Media" - "May 23-27, 2006"
NSF/CBMS 数学科学区域会议 - “多孔介质中流体流动和传输的数学和数值处理” - “2006 年 5 月 23-27 日”
- 批准号:
0532039 - 财政年份:2006
- 资助金额:
$ 7.42万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - "Numerical Methods in Forward and Inverse Electromagnetic Scattering" - June 3-7, 2002
NSF/CBMS 数学科学区域会议 - “正向和逆向电磁散射的数值方法” - 2002 年 6 月 3-7 日
- 批准号:
0121301 - 财政年份:2001
- 资助金额:
$ 7.42万 - 项目类别:
Standard Grant
Mathematical Sciences: Research Experiences in Parallel Numerical Linear Algebra
数学科学:并行数值线性代数的研究经验
- 批准号:
9896361 - 财政年份:1998
- 资助金额:
$ 7.42万 - 项目类别:
Continuing Grant
Mathematical Sciences/GIG: Interdisciplinary Mathematics: Applied and Numerical Analysis in Science and Engineering
数学科学/GIG:跨学科数学:科学与工程中的应用和数值分析
- 批准号:
9709494 - 财政年份:1997
- 资助金额:
$ 7.42万 - 项目类别:
Standard Grant
Mathematical Sciences: NSF-CBMS Regional Conference on the Numerical Analysis of Hamiltonian Differential Equations
数学科学:NSF-CBMS 哈密顿微分方程数值分析区域会议
- 批准号:
9633686 - 财政年份:1997
- 资助金额:
$ 7.42万 - 项目类别:
Standard Grant
Mathematical Sciences: Research Experiences in Parallel Numerical Linear Algebra
数学科学:并行数值线性代数的研究经验
- 批准号:
9619836 - 财政年份:1997
- 资助金额:
$ 7.42万 - 项目类别:
Continuing Grant
Conference on Numerical Analysis and Domain Decomposition at the Courant Institute of Mathematical Sciences; New York, NY; January 23-24, l998
库朗数学科学研究所数值分析和域分解会议;
- 批准号:
9725103 - 财政年份:1997
- 资助金额:
$ 7.42万 - 项目类别:
Standard Grant
Mathematical Sciences: Numerical Analysis for Time-Dependent Differential Equations
数学科学:时态微分方程的数值分析
- 批准号:
9504879 - 财政年份:1996
- 资助金额:
$ 7.42万 - 项目类别:
Continuing Grant