Computation in Refinement Logics for Type Theory

类型论细化逻辑中的计算

基本信息

  • 批准号:
    9108062
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing grant
  • 财政年份:
    1991
  • 资助国家:
    美国
  • 起止时间:
    1991-10-01 至 1996-03-31
  • 项目状态:
    已结题

项目摘要

Computer science is concerned with building abstract structure in "information space". There are so many applications in other fields because these structures are so general and because computer hardware can realize them. Computer Scientist study the laws that govern the processing of information, and they create tools to assist in the task of building structures, testing and understanding them. Among the most powerful tools provided so far are programming languages and environments. But the field is now converging on ways to extend these environments to more powerful and general tools, called problem solving environments. This proposal is about the mathematical basis for one class of such system. The class of systems studied here is characterized by its relationship to logic. It has been discovered that a certain kind of formal logic provides a basis for both functional programming languages and problem solving environments. The idea is that constructive mathematical proofs can be interpreted as functional programs. This notion has now been studied for over a decade and tested in practice. Results have encouraged a much deeper study because the programming method suggested by these systems seems to be more reliable than ordinary programming and much more powerful. It is able to draw on results from theorem proving, logic programming and rigorous programming methodology. This work is concerned with details of how to bring these elements together. It is possible that the discoveries made in this area will significantly change the way people program and the way they solve certain kinds of precise problems. The area is currently the focus of a concerted effort in Britain, France, Sweden, Germany, and the U.S. Researchers feel that soon systems of the kind being tested will be widely used beyond the computer science laboratory. This research addresses some of the central theoretical problems that must be solved before that can happen. In particular it is concerned with certain ways that these systems can be augmented by their users (reflection) and with ways that decisions about solving a problem can be postponed in the process of systematic goal-directed problem-solving (or equivalently program development). The idea for postponement centers on the use of a special kind of variable called a logic variable. Results from this investigation will deepen understanding of the relationship between various uses of logic variables and reflection in other parts of computer science and logic and find use in the design of the next generation of problem solving environments.
计算机科学关注的是在“信息空间”中构建抽象结构。由于这些结构非常通用,而且计算机硬件可以实现它们,因此在其他领域有很多应用。计算机科学家研究控制信息处理的规律,他们创造工具来协助构建结构,测试和理解它们。迄今为止提供的最强大的工具是编程语言和环境。但是,这个领域现在正在集中研究如何将这些环境扩展为更强大、更通用的工具,即所谓的问题解决环境。这一建议是关于一类这样的系统的数学基础。这里研究的这类系统的特点是它与逻辑的关系。人们已经发现,某种形式逻辑为函数式编程语言和问题解决环境提供了基础。其思想是构造性的数学证明可以被解释为函数式程序。这个概念已经被研究了十多年,并在实践中得到了验证。这些结果鼓励了更深入的研究,因为这些系统所建议的编程方法似乎比普通编程更可靠,也更强大。它能够利用定理证明、逻辑规划和严格规划方法的结果。这项工作关注的是如何将这些元素结合在一起的细节。这一领域的发现可能会极大地改变人们编程的方式和解决某些精确问题的方式。该领域目前是英国、法国、瑞典、德国和美国共同努力的重点。研究人员认为,这种正在测试的系统很快将被广泛应用于计算机科学实验室之外。这项研究解决了一些必须在此之前解决的核心理论问题。特别地,它关注的是这些系统可以被它们的用户(反射)增强的某些方式,以及在系统的目标导向的问题解决(或等同的程序开发)过程中关于解决问题的决定可以被推迟的方式。延迟的思想集中在一种叫做逻辑变量的特殊变量的使用上。这项调查的结果将加深对逻辑变量的各种用途与计算机科学和逻辑其他部分的反映之间关系的理解,并在下一代问题解决环境的设计中找到用途。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Constable其他文献

Implementing Euclid’s straightedge and compass constructions in type theory

Robert Constable的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Constable', 18)}}的其他基金

EAGER: Constructive Univalent Foundations
EAGER:建设性的单价基础
  • 批准号:
    1650069
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CSR-EHS: Developing a Theory of Events to Improve Distributed Systems
CSR-EHS:开发事件理论以改进分布式系统
  • 批准号:
    0614790
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Enabling Large-Scale Coherency Among Mathematical Texts in the NSDL
实现 NSDL 中数学文本的大规模连贯性
  • 批准号:
    0333526
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Innovative Programming Technology for Embedded Systems
嵌入式系统的创新编程技术
  • 批准号:
    0208536
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
U.S.-Germany Cooperative Research: Enhancing Proof Assistant Systems
美德合作研究:增强证明辅助系统
  • 批准号:
    0003789
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Educational Innovation: Creating and Evaluating Formal Courseware for Mathematics and Computing
教育创新:创建和评估数学和计算的正式课件
  • 批准号:
    9812630
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Creating and Evaluating Interactive Formal Courseware for Mathematics and Computing
创建和评估数学和计算交互式正式课件
  • 批准号:
    9555162
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Exploring New Constructs in Computational Type Theory
探索计算类型理论的新结构
  • 批准号:
    9423687
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
A Set Theory for Functional Programming Languages
函数式编程语言的集合论
  • 批准号:
    9203302
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Improving the Nuprl Proof Development System
改进Nuprl证明开发系统
  • 批准号:
    9002822
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Thermo-Mechanical Separation by Atomic Diffusion for Refinement and Recycling of Alloys
通过原子扩散进行热机械分离,用于合金的精炼和回收
  • 批准号:
    2311311
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Bond Strengthening and Grain Size Refinement in Superhard Metal Borides
超硬金属硼化物中的键强化和晶粒尺寸细化
  • 批准号:
    2312942
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Development, Evaluation and Refinement of Metalloenediyne Complex Cyclization Kinetics for Biological Applications
用于生物应用的金属烯二炔络合物环化动力学的开发、评估和完善
  • 批准号:
    2247314
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Refinement and q-deformation of topological recursion and their applications
拓扑递归的细化和q变形及其应用
  • 批准号:
    23K12968
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of tools for rapid systematic refinement of in vivo gene editing technologies
开发用于快速系统完善体内基因编辑技术的工具
  • 批准号:
    10740025
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
CAREER: Robot Learning of Complex Tasks via Skill Reusability and Refinement
职业:机器人通过技能的可重用性和改进来学习复杂的任务
  • 批准号:
    2237463
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
The Emergence and Refinement of Grammars: perspectives from syntax and phonology
语法的出现和完善:句法和音韵学的视角
  • 批准号:
    2890509
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
VERGE - Valve Edge Matching Refinement for Greater Efficiency
VERGE - 阀门边缘匹配细化以提高效率
  • 批准号:
    10073937
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Refinement of marine nitrogen isoscapes as a basis for Iso-logging
作为等值测井基础的海洋氮等值图的细化
  • 批准号:
    23H03535
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Understanding and supporting self-harm recovery through qualitative survivor research: development and refinement of the Self-Harm Recovery Mode
通过定性幸存者研究理解和支持自残康复:自残康复模式的开发和完善
  • 批准号:
    2889169
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了