Development of tools for rapid systematic refinement of in vivo gene editing technologies
开发用于快速系统完善体内基因编辑技术的工具
基本信息
- 批准号:10740025
- 负责人:
- 金额:$ 42.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2025-08-14
- 项目状态:未结题
- 来源:
- 关键词:CRISPR/Cas technologyCardiacCardiac MyocytesCell ProliferationCellsCharacteristicsChromatinClustered Regularly Interspaced Short Palindromic RepeatsCustomDNA RepairDNA Repair GeneDependovirusDevelopmentEnabling FactorsEnsureEpigenetic ProcessGene ExpressionGene Transduction AgentGenesGenetic DiseasesGenetic ScreeningGenomic DNAGenomicsHepatocyteHumanIn VitroKnock-outKnockout MiceLibrariesMeasurementMeasuresMediatingMethodologyMethodsMitoticModificationMolecularMusMutationNaturePathway interactionsProteinsRegulator GenesReportingResourcesRoleSafetySiteSystemTechnologyTestingTherapeuticTimeTissuesViral Genomeadeno-associated viral vectorcellular transductionclinical translationgenetic variantgenome editinggenome sequencingimprovedin vivoinsightknockout geneloss of functionmodel organismnext generation sequencingnovelpostmitoticprecise genome editingprogramsrepairedscreeningsoundtooltool development
项目摘要
Abstract
Genome sequencing efforts are increasingly revealing gene variants that disrupt tissue development
and function. Therapies for genetic disorders are currently limited by our inability to make precise and
permanent adjustments to dysfunctional genes and associated regulatory programs. However, CRISPR/Cas9-
based genome editing is proving to be a powerful gene regulatory tool with tremendous therapeutic potential.
One particularly promising approach is the use of adeno-associated virus (AAV) to deliver CRISPR/Cas9
components as well as a template for homology directed repair (HDR; AAV-HDR). In vitro AAV-HDR efficiency
can be spectacularly high, with >90% of transduced cells correctly edited in some cases, while in vivo studies
have demonstrated more modest, and highly variable, results. To successfully employ AAV-HDR in a
therapeutic setting, its efficiency will need to be optimized. In addition, a robust understanding of AAV-HDR
mechanisms will be necessary to ensure safety. Unfortunately, efforts to study and improve AAV-HDR have
been severely hampered by a lack of tools that allow for high-throughput, systematic analyses. Hypothesis:
Development of high-throughput methodologies for measuring in vivo AAV-HDR editing efficiency will enable
rapid discovery of the underlying molecular mechanisms and facilitate optimization necessary for clinical
translation.
This proposal will develop and deploy the tools necessary for rapid, systematic refinement of in vivo
AAV-HDR. In Aim 1, using mice as a model organism, we will develop a method for simultaneously measuring
AAV-HDR efficiency at many target loci. We will investigate the locus-dependent variability of AAV-HDR
efficiency by utilizing the system to analyze the relationship between efficiency and target locus chromatin
state in cardiomyocytes. In Aim 2, we will develop a high-throughput method, based on a pooled CRISPR-
knockout screen, for assessing the impact of gene perturbations on cardiac AAV-HDR efficiency. We will use
the system to gain insights into the molecular mechanism of AAV-HDR, by identifying DNA-repair factors that
are necessary for successful gene editing.
AAV-HDR can occur at high efficiency within heart muscle cells, although efficiency varies dramatically
by target locus. Here we propose development of two systems that will leverage next-generation sequencing to
make many parallel measurements of AAV-HDR efficiency. To our knowledge, both systems will be the first of
their kind. Our use of these systems will lead to key conceptual advances in understanding the mechanisms
underlying AAV-HDR. We anticipate that these technical and conceptual advances will promote development
of AAV-HDR based therapies.
摘要
基因组测序工作越来越多地揭示了破坏组织发育的基因变异
和功能遗传疾病的治疗目前受到限制,因为我们无法精确和
对功能失调的基因和相关的调节程序进行永久性调整。CRISPR/Cas9-
基于基因组编辑的基因编辑被证明是一种强大的基因调控工具,具有巨大的治疗潜力。
一种特别有前途的方法是使用腺相关病毒(AAV)来递送CRISPR/Cas9。
在一个实施方案中,所述方法包括将所述多核苷酸组分以及用于同源定向修复(HDR; AAV-HDR)的模板结合到所述多核苷酸组分中。体外AAV-HDR效率
可以非常高,在某些情况下,>90%的转导细胞被正确编辑,而体内研究
已经证明了更温和的,高度可变的,结果。为了成功地将AAV-HDR用于
治疗环境,其效率将需要优化。此外,对AAV-HDR的深入了解
必须有机制来确保安全。不幸的是,研究和改进AAV-HDR的努力已经失败。
由于缺乏能够进行高通量系统分析的工具,这一工作受到严重阻碍。假设:
用于测量体内AAV-HDR编辑效率的高通量方法学的开发将使得能够
快速发现潜在的分子机制,并促进临床所需的优化
翻译.
该提案将开发和部署快速、系统地完善体内技术所需的工具
AAV-HDR。在目标1中,使用小鼠作为模式生物,我们将开发一种同时测量
在许多靶基因座的AAV-HDR效率。我们将研究AAV-HDR的基因座依赖性变异性,
通过利用该系统分析效率与靶位点染色质之间的关系,
在心肌细胞中的状态。在目标2中,我们将开发一种高通量方法,基于合并的CRISPR-
敲除筛选,用于评估基因扰动对心脏AAV-HDR效率的影响。我们将使用
该系统通过鉴定DNA修复因子来深入了解AAV-HDR的分子机制,
是成功基因编辑的必要条件。
AAV-HDR可以在心肌细胞内以高效率发生,尽管效率变化很大。
通过目标轨迹。在这里,我们提出了两个系统的发展,将利用下一代测序,
进行AAV-HDR效率的许多并行测量。据我们所知,这两个系统将是第一个
他们的同类我们对这些系统的使用将导致理解这些机制的关键概念的进步
基础AAV-HDR。我们预期这些技术和概念上的进步将促进发展
基于AAV-HDR的治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathan James VanDusen其他文献
Nathan James VanDusen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathan James VanDusen', 18)}}的其他基金
Functional dissection of the regulatory network that governs cardiomyocyte maturation
控制心肌细胞成熟的调节网络的功能剖析
- 批准号:
10629491 - 财政年份:2022
- 资助金额:
$ 42.53万 - 项目类别:
Functional dissection of the regulatory network that governs cardiomyocyte maturation
控制心肌细胞成熟的调节网络的功能剖析
- 批准号:
10686262 - 财政年份:2022
- 资助金额:
$ 42.53万 - 项目类别:
Functional dissection of the regulatory network that governs cardiomyocyte maturation.
控制心肌细胞成熟的调节网络的功能剖析。
- 批准号:
9918961 - 财政年份:2019
- 资助金额:
$ 42.53万 - 项目类别:
Functional dissection of the regulatory network that governs cardiomyocyte maturation.
控制心肌细胞成熟的调节网络的功能剖析。
- 批准号:
10348401 - 财政年份:2019
- 资助金额:
$ 42.53万 - 项目类别:
Identification and analysis of factors that regulate cardiomyocyte maturation
心肌细胞成熟调节因素的鉴定与分析
- 批准号:
9379399 - 财政年份:2016
- 资助金额:
$ 42.53万 - 项目类别:
相似海外基金
Modeling the spatiotemporal properties of crosstalk between RYR-mediated and IP3R-mediated calcium signaling in cardiac myocytes
模拟心肌细胞中 RYR 介导和 IP3R 介导的钙信号传导之间串扰的时空特性
- 批准号:
10701689 - 财政年份:2022
- 资助金额:
$ 42.53万 - 项目类别:
Understanding the mechanism why cardiac myocytes resist Myc-induced proliferation
了解心肌细胞抵抗 Myc 诱导的增殖的机制
- 批准号:
21K08854 - 财政年份:2021
- 资助金额:
$ 42.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidating molecular mechanisms of magnesium regulation to protect cardiac myocytes against life-style related diseases
阐明镁调节保护心肌细胞免受生活方式相关疾病的分子机制
- 批准号:
20K11518 - 财政年份:2020
- 资助金额:
$ 42.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Host-parasite lipid metabolism in Trypanosoma cruzi-infected cardiac myocytes
克氏锥虫感染心肌细胞中宿主寄生虫的脂质代谢
- 批准号:
10058037 - 财政年份:2020
- 资助金额:
$ 42.53万 - 项目类别:
Host-parasite lipid metabolism in Trypanosoma cruzi-infected cardiac myocytes
克氏锥虫感染心肌细胞中宿主寄生虫的脂质代谢
- 批准号:
10249356 - 财政年份:2020
- 资助金额:
$ 42.53万 - 项目类别:
A System to Optically Determine the Absolute Membrane Potential in Human iPSCD Cardiac Myocytes
光学测定人 iPSCD 心肌细胞绝对膜电位的系统
- 批准号:
10081467 - 财政年份:2020
- 资助金额:
$ 42.53万 - 项目类别:
Intramyocardial magnetic targeting of cardiac myocytes
心肌细胞的心肌内磁靶向
- 批准号:
405831333 - 财政年份:2018
- 资助金额:
$ 42.53万 - 项目类别:
Research Grants
Translational research for the development of novel heart failure therapy that targets signaling pathway in cardiac myocytes
开发针对心肌细胞信号通路的新型心力衰竭疗法的转化研究
- 批准号:
18K08121 - 财政年份:2018
- 资助金额:
$ 42.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




