Multiagent Search Algorithms for Learning & Planning in Colony-Style Robots
用于学习的多智能体搜索算法
基本信息
- 批准号:9109298
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1991
- 资助国家:美国
- 起止时间:1991-08-01 至 1994-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Direct implementation of the sensory-cognitive motor triad for intelligent robotic systems will generally place severe demands on the computing, communication, and memory resources of these systems. One solution to this problem has been to distribute the triad's functionality among various physical components of the robot. The colony-style robot ı1! and its predecessor ı2! (subsummation architecture) represent related methods for achieving this functional distribution. Colony-style robots use a collection(ie., colony) of hierarchically inhibited agents to control the robot. Existing colony-style robots suffer several disadvantages limiting their utility as autonomous system. These disadvantages involve problems in determining the robot's underlying control hierarchy and the inability of existing systems to save and use prior experience. This project uses multiagent processing paradigms called multiagent search strategies of MASS algorithms ı3! to solve the deficiencies of current colony-style systems. MASS algorithms ar inspired by recent work with competitively and cooperatively inhibited neural networks ı3!ı4!. It can be shown, using statistical mechanical arguments, that competitive MASS algorithms can form minimum entropy representations of density functions. This project uses that analytical formalism to develop MASS algorithms capable of learning the components and structure of the colony-style control hierarchy. The research also explores how "cooperative" MASS can be used to realize fully discretized solution of Bellman's dynamic programming equation, and uses this capability to devise a method for implementing long term memory and path planning capabilities in colony-style robots. The project will fully develop, through simulation and analysis, the MASS algorithms needed to realize memory, learning, and planning in colony-style robots. The research will also investigate extensions of this approach to more complex systems such as flexible manufacturing systems.
智能机器人系统的感觉认知运动三元组的直接实现通常会对这些系统的计算、通信和存储资源提出严格的要求。 该问题的一种解决方案是将三元组的功能分布在机器人的各个物理组件之间。 殖民地式机器人ı1!及其前身 ı2! (求和架构)代表实现这种功能分布的相关方法。 群体型机器人使用分层抑制代理的集合(即群体)来控制机器人。 现有的群体式机器人存在一些缺点,限制了它们作为自主系统的实用性。 这些缺点涉及确定机器人底层控制层次的问题以及现有系统无法保存和使用先前的经验。 该项目使用多智能体处理范例,称为 MASS 算法的多智能体搜索策略 ı3!解决当前殖民地式系统的缺陷。 MASS 算法的灵感来自最近有关竞争性和合作性抑制神经网络的研究 ı3!ı4!。 使用统计力学论证可以证明,竞争性 MASS 算法可以形成密度函数的最小熵表示。 该项目使用这种分析形式来开发能够学习群体式控制层次结构的组件和结构的 MASS 算法。 该研究还探索了如何使用“协作”MASS 来实现贝尔曼动态规划方程的完全离散解,并利用这种能力设计出一种在群体式机器人中实现长期记忆和路径规划功能的方法。 该项目将通过仿真和分析,全面开发实现群体型机器人的记忆、学习和规划所需的 MASS 算法。 该研究还将研究这种方法扩展到更复杂的系统,例如柔性制造系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Lemmon其他文献
Do voluntary corporate restrictions on insider trading eliminate informed insider trading?
- DOI:
10.1016/j.jcorpfin.2014.07.005 - 发表时间:
2014-12-01 - 期刊:
- 影响因子:
- 作者:
Inmoo Lee;Michael Lemmon;Yan Li;John M. Sequeira - 通讯作者:
John M. Sequeira
CSOnet: A Metropolitan Scale Wireless Sensor-Actuator Network
CSOnet:城市规模无线传感器执行器网络
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Michael Lemmon;EmNet Llc;L. Montestruque;Notre Dame;Lemmon;Talley;BagchiChappell - 通讯作者:
BagchiChappell
Michael Lemmon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Lemmon', 18)}}的其他基金
CPS: Small: Learning How to Control: A Meta-Learning Approach for the Adaptive Control of Cyber-Physical Systems
CPS:小:学习如何控制:网络物理系统自适应控制的元学习方法
- 批准号:
2228092 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
CPS: Synergy: Resilient Wireless Sensor-Actuator Networks
CPS:协同:弹性无线传感器执行器网络
- 批准号:
1239222 - 财政年份:2012
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
CPS: Small: Dynamically Managing the Real-time Fabric of a Wireless Sensor-Actuator Network
CPS:小型:动态管理无线传感器执行器网络的实时结构
- 批准号:
0931195 - 财政年份:2009
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Distributed Optimization, Estimation, and Control of Networked Systems through Event-triggered Message Passing
通过事件触发消息传递对网络系统进行分布式优化、估计和控制
- 批准号:
0925229 - 财政年份:2009
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
CSR-EHS:Integrating Decentralized Control and Real-Time Scheduling for Networked Dynamical Systems
CSR-EHS:网络化动态系统的分散控制和实时调度集成
- 批准号:
0720457 - 财政年份:2007
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Scalable Decentralized Control over Ad Hoc Sensor Actuator Networks
对 Ad Hoc 传感器执行器网络的可扩展分散控制
- 批准号:
0400479 - 财政年份:2004
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Performance Based Soft Real-time Scheduling in Networked Control Systems
网络控制系统中基于性能的软实时调度
- 批准号:
0208537 - 财政年份:2002
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Ad Hoc Networks of Embedded Control Systems
嵌入式控制系统的自组织网络
- 批准号:
0225265 - 财政年份:2002
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Algorithmic Verification and Synthesis of Hybrid Control Systems
混合控制系统的算法验证与综合
- 批准号:
9986918 - 财政年份:2000
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
相似海外基金
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
CIF: Small: Theory and Algorithms for Efficient and Large-Scale Monte Carlo Tree Search
CIF:小型:高效大规模蒙特卡罗树搜索的理论和算法
- 批准号:
2327013 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Empirical Comparison of Evaluation Functions and Search Algorithms and Their Combination to Cover Their Weakness
评估函数和搜索算法的实证比较及其组合以弥补其弱点
- 批准号:
23K11383 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding and Improving Search-Based Algorithms for Neural Sequence Generation
理解和改进基于搜索的神经序列生成算法
- 批准号:
RGPIN-2022-04154 - 财政年份:2022
- 资助金额:
$ 6万 - 项目类别:
Discovery Grants Program - Individual
Understanding and Improving Search-Based Algorithms for Neural Sequence Generation
理解和改进基于搜索的神经序列生成算法
- 批准号:
DGECR-2022-00393 - 财政年份:2022
- 资助金额:
$ 6万 - 项目类别:
Discovery Launch Supplement
Applications of Grover's search: hybrid quantum classical algorithms
Grover 搜索的应用:混合量子经典算法
- 批准号:
575054-2022 - 财政年份:2022
- 资助金额:
$ 6万 - 项目类别:
University Undergraduate Student Research Awards
A Search for Emerging Jets in A Toroidal Large Hadron Collider Apparatus (ATLAS) Using Machine-Learning Algorithms
使用机器学习算法搜索环形大型强子对撞机 (ATLAS) 中的新兴喷流
- 批准号:
565798-2021 - 财政年份:2021
- 资助金额:
$ 6万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
NSF-BSF: RI: Small: Efficient Bi- and Multi-Objective Search Algorithms
NSF-BSF:RI:小型:高效的双目标和多目标搜索算法
- 批准号:
2121028 - 财政年份:2021
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Global structure search of two-dimensional materials based on evolutionary algorithms and gaussian process regression
基于进化算法和高斯过程回归的二维材料全局结构搜索
- 批准号:
21K03419 - 财政年份:2021
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Search Based Graph Algorithms
基于搜索的图算法
- 批准号:
RGPIN-2016-05565 - 财政年份:2021
- 资助金额:
$ 6万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




