Distributed Optimization, Estimation, and Control of Networked Systems through Event-triggered Message Passing
通过事件触发消息传递对网络系统进行分布式优化、估计和控制
基本信息
- 批准号:0925229
- 负责人:
- 金额:$ 29.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-10-15 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this program is to develop event-triggered methods for message passing in the optimization, estimation, and control of networked dynamical systems. Prior work has demonstrated experimentally that event-triggering can greatly reduce communication usage while maintaining high levels of networked system performance. The main goal of this project is to develop formalisms that better explain the reason for these benefits and to develop a more systematic approach to designing event-triggered networked systems. The project's intellectual merit is that event-triggering provides a solid theoretical basis for the discretization of networks of dynamical systems. This basis is based upon the simple idea that messages between subsystems should only exchanged when there is novel information relevant to theperformance of the overall system. This event-triggered approach therefore has subsystems transmit information when some internal measure of that information's novelty exceeds a time-varying and state-dependent threshold. The design of these thresholds is accomplished by enforcing stability concepts (such as input-to-state stability or input-output stability) subject to constraints on the frequency with which information can be passed within the overall system. The transformative nature of this approach lies in its potential to provide a systematic approach to the discretization of systems in a manner that goes well beyond conventional Nyquist sampling. The project's impact will be broadened through interactions with industrial partners EmNet LLC and Odyssian LLC. EmNet LLC is interested in using event-triggered message passing on the CSOnet system, a wireless sensor-actuator network being used to control the frequency of combined seweroverflow (CSO) events. Odyssian LLC is interested in using event-triggered methods for the intelligent control of event-triggered microgrids. The project's impact will also be broadened through interactionswith middle school students interested in robotic systems. The project's impacts will be broadened further through interactions with European researchers.
该项目的目标是开发事件触发的方法,用于网络动力系统的优化、估计和控制中的消息传递。 先前的工作已经通过实验证明,事件触发可以大大减少通信使用量,同时保持高水平的网络系统性能。 该项目的主要目标是开发形式体系,更好地解释这些好处的原因,并开发一种更系统的方法来设计事件触发的网络系统。该项目的智力优势在于事件触发为动力系统网络的离散化提供了坚实的理论基础。 这个基础基于这样一个简单的想法:只有当存在与整个系统的性能相关的新信息时,子系统之间的消息才应该交换。 因此,当信息新颖性的某些内部测量超过时变且与状态相关的阈值时,这种事件触发方法使子系统传输信息。 这些阈值的设计是通过强制稳定性概念(例如输入状态稳定性或输入输出稳定性)来完成的,但受到整个系统内信息传递频率的限制。 这种方法的变革性本质在于它有可能以远远超出传统奈奎斯特采样的方式提供系统离散化的系统方法。 通过与工业合作伙伴 EmNet LLC 和 Odyssian LLC 的互动,该项目的影响力将得到扩大。 EmNet LLC 有兴趣在 CSOnet 系统上使用事件触发消息传递,这是一个无线传感器执行器网络,用于控制组合下水道溢出 (CSO) 事件的频率。 Odyssian LLC 有兴趣使用事件触发方法对事件触发微电网进行智能控制。 通过与对机器人系统感兴趣的中学生的互动,该项目的影响也将扩大。 通过与欧洲研究人员的互动,该项目的影响将进一步扩大。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Lemmon其他文献
Do voluntary corporate restrictions on insider trading eliminate informed insider trading?
- DOI:
10.1016/j.jcorpfin.2014.07.005 - 发表时间:
2014-12-01 - 期刊:
- 影响因子:
- 作者:
Inmoo Lee;Michael Lemmon;Yan Li;John M. Sequeira - 通讯作者:
John M. Sequeira
CSOnet: A Metropolitan Scale Wireless Sensor-Actuator Network
CSOnet:城市规模无线传感器执行器网络
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Michael Lemmon;EmNet Llc;L. Montestruque;Notre Dame;Lemmon;Talley;BagchiChappell - 通讯作者:
BagchiChappell
Michael Lemmon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Lemmon', 18)}}的其他基金
CPS: Small: Learning How to Control: A Meta-Learning Approach for the Adaptive Control of Cyber-Physical Systems
CPS:小:学习如何控制:网络物理系统自适应控制的元学习方法
- 批准号:
2228092 - 财政年份:2023
- 资助金额:
$ 29.89万 - 项目类别:
Standard Grant
CPS: Synergy: Resilient Wireless Sensor-Actuator Networks
CPS:协同:弹性无线传感器执行器网络
- 批准号:
1239222 - 财政年份:2012
- 资助金额:
$ 29.89万 - 项目类别:
Standard Grant
CPS: Small: Dynamically Managing the Real-time Fabric of a Wireless Sensor-Actuator Network
CPS:小型:动态管理无线传感器执行器网络的实时结构
- 批准号:
0931195 - 财政年份:2009
- 资助金额:
$ 29.89万 - 项目类别:
Standard Grant
CSR-EHS:Integrating Decentralized Control and Real-Time Scheduling for Networked Dynamical Systems
CSR-EHS:网络化动态系统的分散控制和实时调度集成
- 批准号:
0720457 - 财政年份:2007
- 资助金额:
$ 29.89万 - 项目类别:
Continuing Grant
Scalable Decentralized Control over Ad Hoc Sensor Actuator Networks
对 Ad Hoc 传感器执行器网络的可扩展分散控制
- 批准号:
0400479 - 财政年份:2004
- 资助金额:
$ 29.89万 - 项目类别:
Standard Grant
Performance Based Soft Real-time Scheduling in Networked Control Systems
网络控制系统中基于性能的软实时调度
- 批准号:
0208537 - 财政年份:2002
- 资助金额:
$ 29.89万 - 项目类别:
Continuing Grant
Ad Hoc Networks of Embedded Control Systems
嵌入式控制系统的自组织网络
- 批准号:
0225265 - 财政年份:2002
- 资助金额:
$ 29.89万 - 项目类别:
Standard Grant
Algorithmic Verification and Synthesis of Hybrid Control Systems
混合控制系统的算法验证与综合
- 批准号:
9986918 - 财政年份:2000
- 资助金额:
$ 29.89万 - 项目类别:
Continuing Grant
Multiagent Search Algorithms for Learning & Planning in Colony-Style Robots
用于学习的多智能体搜索算法
- 批准号:
9109298 - 财政年份:1991
- 资助金额:
$ 29.89万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Structural Estimation and Optimization for Partially Observable Markov Decision Processes and Markov Games
职业:部分可观察马尔可夫决策过程和马尔可夫博弈的结构估计和优化
- 批准号:
2236477 - 财政年份:2023
- 资助金额:
$ 29.89万 - 项目类别:
Standard Grant
Optimization of Markov Chain Monte Carlo Schemes with Spectral Gap Estimation
具有谱间隙估计的马尔可夫链蒙特卡罗方案优化
- 批准号:
2311307 - 财政年份:2023
- 资助金额:
$ 29.89万 - 项目类别:
Continuing Grant
Statistical Reconstruction of Highly Undersampled DCE MRI with Constrained Optimization for Parameter Estimation
具有参数估计约束优化的高度欠采样 DCE MRI 统计重建
- 批准号:
569544-2022 - 财政年份:2022
- 资助金额:
$ 29.89万 - 项目类别:
Postgraduate Scholarships - Doctoral
Intelligent Multi-Agent Systems: Cooperative Control, Estimation and Optimization
智能多智能体系统:协作控制、估计和优化
- 批准号:
568048-2022 - 财政年份:2022
- 资助金额:
$ 29.89万 - 项目类别:
Postdoctoral Fellowships
Optimization-based statistical methods: functional estimation, sparsity, compound decisions, and deep learning
基于优化的统计方法:函数估计、稀疏性、复合决策和深度学习
- 批准号:
RGPIN-2020-04424 - 财政年份:2022
- 资助金额:
$ 29.89万 - 项目类别:
Discovery Grants Program - Individual
Microscopic urban traffic state estimation and optimization by data driven approach
数据驱动方法的微观城市交通状态估计和优化
- 批准号:
20KK0334 - 财政年份:2021
- 资助金额:
$ 29.89万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
CAREER: Nonconvex Optimization for Statistical Estimation and Learning: Conditioning, Dynamics, and Nonsmoothness
职业:统计估计和学习的非凸优化:条件、动力学和非平滑性
- 批准号:
2047637 - 财政年份:2021
- 资助金额:
$ 29.89万 - 项目类别:
Continuing Grant
Optimization-based statistical methods: functional estimation, sparsity, compound decisions, and deep learning
基于优化的统计方法:函数估计、稀疏性、复合决策和深度学习
- 批准号:
RGPIN-2020-04424 - 财政年份:2021
- 资助金额:
$ 29.89万 - 项目类别:
Discovery Grants Program - Individual
Rank estimation and optimization methods for tensor network decomposition, and its applications
张量网络分解的秩估计和优化方法及其应用
- 批准号:
20H04208 - 财政年份:2020
- 资助金额:
$ 29.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Optimization-based statistical methods: functional estimation, sparsity, compound decisions, and deep learning
基于优化的统计方法:函数估计、稀疏性、复合决策和深度学习
- 批准号:
RGPIN-2020-04424 - 财政年份:2020
- 资助金额:
$ 29.89万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




