Algebraic Topology in Robust Control
鲁棒控制中的代数拓扑
基本信息
- 批准号:9113088
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1991
- 资助国家:美国
- 起止时间:1991-08-15 至 1994-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this proposal is to being together robust control and algebraic topology. It is argued that such robust control issues as structured singular values, multivariable phase margin, Kharitonov's theorem, etc. receive their natural and unifying formulation in the context of algebraic topology, as formulated by Poincare, Cartan, Eilenberg, and many others. The central mathematical issue is whether the mapping of the high dimensional manifold of structured uncertainties into the Nyquist template commutes with the boundary. While in the simple Kharitonov case it does, in the over-whelming majority of situations the Nyquist mapping does not commute with the boundary. However, the simplicial approximation theorem provides us with an approximate Nyquist map that does commute with the boundary. Fast implementation of the simplicial approximation theorem opens the road to a variety of fast, "simplicial" algorithms. Finally, performing some algebra on the simplicial approximation yield the "topography" of the stability boundary, that can be very complicated.
该方案的目的是将鲁棒控制和代数拓扑结合在一起。结构奇异值、多变量相位裕度、Kharitonov定理等鲁棒控制问题在Poincare、Cartan、Eilenberg等人提出的代数拓扑学中得到了自然而统一的表述。核心的数学问题是,结构不确定性的高维流形到奈奎斯特模板的映射是否与边界交换。而在简单的哈里托诺夫情形中,在大多数情况下,奈奎斯特映射并不与边界交换。然而,单纯逼近定理为我们提供了一个与边界可交换的近似奈奎斯特映射。单纯逼近定理的快速实现为各种快速的“单纯”算法开辟了道路。最后,对单纯近似进行一些代数运算,得到稳定边界的“地形”,这可能是非常复杂的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edmond Jonckheere其他文献
Edmond Jonckheere的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edmond Jonckheere', 18)}}的其他基金
IRES TRACK II: US-UK International Student Research in Robust Control of Quantum Networks
IRES TRACK II:美国-英国国际学生对量子网络鲁棒控制的研究
- 批准号:
1829078 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
NeTS: Small: Pareto-Optimized Heat Diffusion Protocol on Ollivier-Ricci Curvature Controlled Wireless Networks
NetS:小型:Ollivier-Ricci 曲率控制无线网络上的帕累托优化热扩散协议
- 批准号:
1423624 - 财政年份:2014
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
NetSE: Small: Load Balancing by Network Curvature Control
NetSE:小型:通过网络曲率控制进行负载平衡
- 批准号:
1017881 - 财政年份:2010
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Ergodic and Topological Aspects of Linear Dynamically Varying (LDV) Control
线性动态变化 (LDV) 控制的遍历和拓扑方面
- 批准号:
9802594 - 财政年份:1998
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Computational Topology in Robust Control
鲁棒控制中的计算拓扑
- 批准号:
9510656 - 财政年份:1995
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Algebraic and Differential Topology in Robust Control
鲁棒控制中的代数和微分拓扑
- 批准号:
9300016 - 财政年份:1993
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Mathematical Sciences: T+H*H Operators in Linear-Quadratic and H-Infinity Problems
数学科学:线性二次和 H 无穷大问题中的 T H*H 算子
- 批准号:
8703954 - 财政年份:1987
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Reduced Modelling by Optimal Hankel-Norm Phase Matching
通过最佳汉克尔范数相位匹配简化建模
- 批准号:
8512817 - 财政年份:1986
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似海外基金
Performance-Driven Robust Topology Optimization of Functionally Graded Lattice Structures
功能梯度晶格结构的性能驱动的鲁棒拓扑优化
- 批准号:
EP/Y023455/1 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Fellowship
Robust Structural Topology Optimization
稳健的结构拓扑优化
- 批准号:
543593-2019 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Collaborative Research and Development Grants
Robust Structural Topology Optimization
稳健的结构拓扑优化
- 批准号:
543593-2019 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Collaborative Research and Development Grants
Robust Structural Topology Optimization
稳健的结构拓扑优化
- 批准号:
543593-2019 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Collaborative Research and Development Grants
Robust topology optimization of innovative porous structures by 3D-printer of continuous fiber reinforced plastics
通过连续纤维增强塑料 3D 打印机对创新多孔结构进行鲁棒拓扑优化
- 批准号:
19H00781 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
RUI: Robust Feasibility and Robust Optimization using Algebraic Topology and Convex Analysis
RUI:使用代数拓扑和凸分析的鲁棒可行性和鲁棒优化
- 批准号:
1819229 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Robust structural and topology optimization for reducing the weight of drones
稳健的结构和拓扑优化,可减轻无人机的重量
- 批准号:
506047-2016 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Collaborative Research and Development Grants
Robust structural and topology optimization for reducing the weight of drones
稳健的结构和拓扑优化,可减轻无人机的重量
- 批准号:
506047-2016 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Collaborative Research and Development Grants
CRII: RI: Distributed, Stable and Robust Topology Control: New Methods for Asymmetrically Interacting Multi-Robot Teams
CRII:RI:分布式、稳定和鲁棒的拓扑控制:非对称交互多机器人团队的新方法
- 批准号:
1657235 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
A New Level-Set-Based Robust Topology Optimization Approach with Applications to Design of Phononic Metamaterials
一种新的基于水平集的鲁棒拓扑优化方法及其在声子超材料设计中的应用
- 批准号:
1462270 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Standard Grant