Computational Topology in Robust Control
鲁棒控制中的计算拓扑
基本信息
- 批准号:9510656
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-10-01 至 1999-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9510656 Jonckheere Traditional robustness issues in uncertain feedback systems analysis and design can be approached by considering the space of uncertain parameters cut into two pieces by the crossover hypersurface separating that part of the uncertainty where specifications are met from that part where specifications are not met. A crucial observation is that this separating hypersurface can get very complicated and complexity bounds on its homology can be found. In addition to the possibility of computing the u function from this geometric situation, structural instability of the hypersurface has indeed appeared to be the only way to explain the embarrassing problem of lack of continuity of the real u-function relative the "certain" parameters. A prototype code for simplicial algorithm construction and display of the hypersurface - using the emerging computational geometry technology - is already on the verge of becoming operational. The first objective of this proposal is to further develop this code into a more powerful, user-friendly one using state-of- the-art computational geometry, anisotropic gridding, etc. The second objective of this proposal is to develop algebraic code (Grobner basis) for singularity of the Nyguist map that could reveal the potential for structural instability of the hypersurface or lack of continuity of performance relative to rounding errors. Special attention will be devoted to singularity over a stratified uncertainty space. ***
小行星9510656 传统的鲁棒性问题在不确定反馈系统的分析和设计,可以通过考虑不确定参数的空间被分割成两部分的交叉超曲面分离的不确定性的部分,其中规格满足,不满足规格。 一个重要的观察是,这种分离的超曲面可以变得非常复杂,并且可以找到其同调的复杂性界限。除了从这种几何情况计算u函数的可能性之外,超曲面的结构不稳定性确实似乎是解释真实的u函数相对于“某些”参数缺乏连续性这一尴尬问题的唯一途径。 一个原型代码的单纯算法建设和显示的超曲面-使用新兴的计算几何技术-已经在成为操作的边缘。 该提案的第一个目标是进一步开发该代码,使其成为一个更强大,用户友好的代码,使用最先进的计算几何,各向异性网格等。 该提案的第二个目标是为Nyguist映射的奇异性开发代数代码(Grobner基),该代码可以揭示超曲面的结构不稳定性或相对于舍入误差缺乏连续性的可能性。 特别注意将致力于奇异性分层不确定性空间。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edmond Jonckheere其他文献
Edmond Jonckheere的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edmond Jonckheere', 18)}}的其他基金
IRES TRACK II: US-UK International Student Research in Robust Control of Quantum Networks
IRES TRACK II:美国-英国国际学生对量子网络鲁棒控制的研究
- 批准号:
1829078 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
NeTS: Small: Pareto-Optimized Heat Diffusion Protocol on Ollivier-Ricci Curvature Controlled Wireless Networks
NetS:小型:Ollivier-Ricci 曲率控制无线网络上的帕累托优化热扩散协议
- 批准号:
1423624 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
NetSE: Small: Load Balancing by Network Curvature Control
NetSE:小型:通过网络曲率控制进行负载平衡
- 批准号:
1017881 - 财政年份:2010
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Ergodic and Topological Aspects of Linear Dynamically Varying (LDV) Control
线性动态变化 (LDV) 控制的遍历和拓扑方面
- 批准号:
9802594 - 财政年份:1998
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Algebraic and Differential Topology in Robust Control
鲁棒控制中的代数和微分拓扑
- 批准号:
9300016 - 财政年份:1993
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Mathematical Sciences: T+H*H Operators in Linear-Quadratic and H-Infinity Problems
数学科学:线性二次和 H 无穷大问题中的 T H*H 算子
- 批准号:
8703954 - 财政年份:1987
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Reduced Modelling by Optimal Hankel-Norm Phase Matching
通过最佳汉克尔范数相位匹配简化建模
- 批准号:
8512817 - 财政年份:1986
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
Performance-Driven Robust Topology Optimization of Functionally Graded Lattice Structures
功能梯度晶格结构的性能驱动的鲁棒拓扑优化
- 批准号:
EP/Y023455/1 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Fellowship
Robust Structural Topology Optimization
稳健的结构拓扑优化
- 批准号:
543593-2019 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Collaborative Research and Development Grants
Robust Structural Topology Optimization
稳健的结构拓扑优化
- 批准号:
543593-2019 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Collaborative Research and Development Grants
Robust Structural Topology Optimization
稳健的结构拓扑优化
- 批准号:
543593-2019 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Collaborative Research and Development Grants
Robust topology optimization of innovative porous structures by 3D-printer of continuous fiber reinforced plastics
通过连续纤维增强塑料 3D 打印机对创新多孔结构进行鲁棒拓扑优化
- 批准号:
19H00781 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
RUI: Robust Feasibility and Robust Optimization using Algebraic Topology and Convex Analysis
RUI:使用代数拓扑和凸分析的鲁棒可行性和鲁棒优化
- 批准号:
1819229 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Robust structural and topology optimization for reducing the weight of drones
稳健的结构和拓扑优化,可减轻无人机的重量
- 批准号:
506047-2016 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Collaborative Research and Development Grants
Robust structural and topology optimization for reducing the weight of drones
稳健的结构和拓扑优化,可减轻无人机的重量
- 批准号:
506047-2016 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Collaborative Research and Development Grants
CRII: RI: Distributed, Stable and Robust Topology Control: New Methods for Asymmetrically Interacting Multi-Robot Teams
CRII:RI:分布式、稳定和鲁棒的拓扑控制:非对称交互多机器人团队的新方法
- 批准号:
1657235 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
A New Level-Set-Based Robust Topology Optimization Approach with Applications to Design of Phononic Metamaterials
一种新的基于水平集的鲁棒拓扑优化方法及其在声子超材料设计中的应用
- 批准号:
1462270 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant