NetSE: Small: Load Balancing by Network Curvature Control
NetSE:小型:通过网络曲率控制进行负载平衡
基本信息
- 批准号:1017881
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project explores the interplay between the topology/geometry of networks and their traffic load pattern with the ultimate objective of deriving new load-balancing algorithms based on curvature control. The phenomenon that is observed in reality is the strong concentration of the traffic on some small subsets of links/nodes. This can be seen in the Internet (?backbone?), in the power grid (?line overload?), in vehicular traffic, in metabolic exchange in living organisms, etc. This phenomenon?the emergence of the centroid?cannot be completely accounted for by the local heavy-tailed paradigm, but strong evidence is provided here that this is a general feature dictated by the large-scale hyperbolic structure of the underlying network. Here, hyperbolic is a metaphor to refer to the fact that such networks as the Internet Service Provider (ISP) behave like negatively curved Riemannian manifolds, of which the saddle is the most intuitive visualization. Behavior refers to the geodesic flow, which carries the traffic and controls its stability or instability (e.g., fluttering) under such perturbation as outage or power depletion. The first part of the proposed research will be devoted to refining criteria for real networks to be identifiable with negatively curved Riemannian manifolds. After developing intuitive criteria based on angle deficit/excess and clustering coefficient, the Gromov Thin Triangle Condition (TTC) and Four-Point Condition (FPC) will be scaled by the size of the graph to become relevant to real networks, which, no matter how awesome their sizes, are nevertheless finite. This leads to the new concept of scale-specific Gromov hyperbolic graphs, of which the Rocketfuel data base already provides an example. Such real-life networks as those provided by Bell Labs, sensor networks, air traffic control, even metabolic and nervous system networks will be used as testbeds. Next, the first step towards congestion analysis is the development of a network-specific concept of centroid or center of mass, already known in the mathematical community in its Riemannian manifold version. While in simulation the centroid has appeared to coincide with the point of maximum traffic, an important research milestone will be the theoretical justification of this fact. At the other end of the curvature spectrum, there is strong evidence that traffic on uniformly positively curved networks is balanced, provided the Dijkstra routing algorithm incorporates a randomization of the equal cost paths. The preceding leads to the culmination of the research: by reassigning link weights so that the resulting network is positively curved, the routing based on the modified network would balance the load. Provided that the Euler characteristic of the network reveals no obstructions, the reassignment is carried over by the so-called Yamabe flow algorithm, which has a decentralized structure and hence would mesh with such network algorithms as flooding. Finally, the algorithm will be given an adaptive control structure, meaning that once it reaches positive curvature, it will continuously update the link weights as necessitated by network outages, flash points, etc.The intellectual merit of the proposed research is that it will take coarse geometry?which has over the past few years silently pervaded such diverse fields as wired and wireless networks, autonomous agents, cooperative control, even biochemistry?along its scale-specific reformulation relevant to complex real-life networks, which do not quite fit the mathematical idealization of Gromov hyperbolic graphs. Certainly, the most transformative part of the research is the load-balancing based on routing on a modified positively curved network. The latter will bring to the real world such curvature smoothing algorithms as the Yamabe flow, which was instrumental in the proof of one of the most celebrated mathematical puzzles of all times?the Poincar´e conjecture.The broader impact of the proposed activity is that it will foster a well-focused, application-driven multidisciplinary collaboration between the Department of Electrical Engineering, the Computer Engineering group, and the most theoretical geometry/topology group of the Department of Mathematics. Joint seminars, group meetings, new course development, etc. will create a new breed of engineering students, knowledgeable in coarse geometry, which has so far not been part of the traditional engineering curriculum. Extensive collaboration with Bell Labs will be maintained throughout the project
该项目探索网络的拓扑/几何结构与其流量负载模式之间的相互作用,最终目标是基于曲率控制推导新的负载平衡算法。现实中观察到的现象是流量强烈集中在链路/节点的一些小子集上。这可以在互联网(“骨干网”)、电网(“线路过载”)、车辆交通、生物体的代谢交换等中看到。这种现象(质心的出现)不能完全用局部重尾范式来解释,但这里提供了强有力的证据,表明这是由底层网络的大规模双曲结构决定的普遍特征。在这里,双曲是一个隐喻,指的是互联网服务提供商(ISP)等网络的行为就像负弯曲的黎曼流形,其中鞍形是最直观的可视化。行为是指测地流,它承载流量并在停电或电力耗尽等扰动下控制其稳定性或不稳定(例如,颤动)。拟议研究的第一部分将致力于完善可通过负弯曲黎曼流形识别的真实网络的标准。在制定基于角度不足/过剩和聚类系数的直观标准后,格罗莫夫薄三角条件(TTC)和四点条件(FPC)将根据图形的大小进行缩放,以与真实网络相关,而无论其大小如何,它们仍然是有限的。这引出了特定尺度的格罗莫夫双曲线图的新概念,Rocketfuel 数据库已经提供了一个例子。贝尔实验室提供的现实网络、传感器网络、空中交通管制、甚至代谢和神经系统网络将被用作测试平台。接下来,拥塞分析的第一步是开发特定于网络的质心或质心概念,该概念在数学界的黎曼流形版本中已为人所知。虽然在模拟中质心似乎与最大流量点重合,但一个重要的研究里程碑将是这一事实的理论论证。在曲率谱的另一端,有强有力的证据表明,只要 Dijkstra 路由算法包含等成本路径的随机化,均匀正弯曲网络上的流量是平衡的。前面的内容引出了研究的高潮:通过重新分配链路权重,使最终的网络呈正向弯曲,基于修改后的网络的路由将平衡负载。如果网络的欧拉特性没有显示出任何障碍,则重新分配将由所谓的 Yamabe 流算法进行,该算法具有分散的结构,因此可以与泛洪等网络算法相结合。最后,该算法将被赋予自适应控制结构,这意味着一旦达到正曲率,它将根据网络中断、闪点等情况不断更新链路权重。所提出的研究的智力优点在于它将采用粗几何结构——在过去的几年里,粗几何结构已悄然渗透到有线和无线网络、自主代理、协作控制、甚至生物化学等不同领域。 其与复杂的现实生活网络相关的特定尺度的重新表述,不太符合格罗莫夫双曲线图的数学理想化。当然,该研究中最具变革性的部分是基于改进的正弯曲网络上的路由的负载均衡。后者将把像 Yamabe flow 这样的曲率平滑算法带入现实世界,该算法在证明有史以来最著名的数学难题之一——庞加莱猜想方面发挥了重要作用。拟议活动的更广泛影响是,它将促进电气工程系、计算机工程组和最具理论性的部门之间的重点突出、应用驱动的多学科合作。 数学系几何/拓扑组。联合研讨会、小组会议、新课程开发等将培养新一代的工程学生,他们具有粗略几何知识,而这迄今为止还不是传统工程课程的一部分。在整个项目中将保持与贝尔实验室的广泛合作
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edmond Jonckheere其他文献
Edmond Jonckheere的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edmond Jonckheere', 18)}}的其他基金
IRES TRACK II: US-UK International Student Research in Robust Control of Quantum Networks
IRES TRACK II:美国-英国国际学生对量子网络鲁棒控制的研究
- 批准号:
1829078 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NeTS: Small: Pareto-Optimized Heat Diffusion Protocol on Ollivier-Ricci Curvature Controlled Wireless Networks
NetS:小型:Ollivier-Ricci 曲率控制无线网络上的帕累托优化热扩散协议
- 批准号:
1423624 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Ergodic and Topological Aspects of Linear Dynamically Varying (LDV) Control
线性动态变化 (LDV) 控制的遍历和拓扑方面
- 批准号:
9802594 - 财政年份:1998
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Computational Topology in Robust Control
鲁棒控制中的计算拓扑
- 批准号:
9510656 - 财政年份:1995
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Algebraic and Differential Topology in Robust Control
鲁棒控制中的代数和微分拓扑
- 批准号:
9300016 - 财政年份:1993
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Mathematical Sciences: T+H*H Operators in Linear-Quadratic and H-Infinity Problems
数学科学:线性二次和 H 无穷大问题中的 T H*H 算子
- 批准号:
8703954 - 财政年份:1987
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Reduced Modelling by Optimal Hankel-Norm Phase Matching
通过最佳汉克尔范数相位匹配简化建模
- 批准号:
8512817 - 财政年份:1986
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
CC* INTEGRATION-SMALL: ADIABATIC MICROSERVICE LEVEL LOAD BALANCED FORWARDING ON PISA SWITCH FOR ACCELERATING URGENT PROCESSES IN SCIENCE DATA CENTER NETWORKS
CC* 集成小型:PISA 交换机上的绝热微服务级负载平衡转发,用于加速科学数据中心网络中的紧急进程
- 批准号:
2346729 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Small load electrodynamic testing machine
小负载电动试验机
- 批准号:
537597911 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Major Research Instrumentation
CIF: Small: Load Balancing for Cloud Networks: Data Locality Issues and Modern Algorithms
CIF:小型:云网络的负载平衡:数据局部性问题和现代算法
- 批准号:
2113027 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Severity assessment of small wrinkles in pipelines subject to load cycles
受负载循环影响的管道中小皱纹的严重性评估
- 批准号:
493087-2015 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Collaborative Research and Development Grants
CNS: Core: Small: Energy and Load Management in Data Centers: Online Optimization and Learning
CNS:核心:小型:数据中心的能源和负载管理:在线优化和学习
- 批准号:
1908298 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Fundamental Tradeoffs Between Communication Load and Storage Resources in Distributed systems
CIF:小:分布式系统中通信负载和存储资源之间的基本权衡
- 批准号:
1910309 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Severity assessment of small wrinkles in pipelines subject to load cycles
受负载循环影响的管道中小皱纹的严重性评估
- 批准号:
493087-2015 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Collaborative Research and Development Grants
SHF: Small: Design Methodology for Efficient and Reliable Medium-Power Point-of-Load Converters via In-Field Built-in Self-Calibration
SHF:小型:通过现场内置自校准实现高效、可靠的中功率负载点转换器的设计方法
- 批准号:
1910380 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CSR: Small: Cross-Layer Design of Power Delivery and Load Balancing for Green Data Centers
CSR:小型:绿色数据中心的电力传输和负载平衡的跨层设计
- 批准号:
1837924 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Study on embankment of Small Earthfill Dam at Acting Load due to Inflow of Sediment
作用荷载下泥沙流入小型土坝路堤研究
- 批准号:
17K15349 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Young Scientists (B)