Ergodic and Topological Aspects of Linear Dynamically Varying (LDV) Control

线性动态变化 (LDV) 控制的遍历和拓扑方面

基本信息

  • 批准号:
    9802594
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-09-01 至 2002-08-31
  • 项目状态:
    已结题

项目摘要

9802594JonckheereWhen confronted with the problem of controlling a nonlinear dynamical system with unknown parameters, it is tempting to compute a family of linearized approximations, derive the LQ, H-infinity or Mu controller around each operating point, and then "stitch together" all of the locally stabilizing compensators in a globally working scheme. One such approach has recently been referred to as Linear Parametrically Varying (LPV) control where the parameters are of unknown dynamics, but constrained to lie in a bounded set, in which their variation should be slow enough to ensure stability of the adaptive scheme. Motivated by problems as tracking of transitive orbits, this proposal develops the so-called Linear Dynamically Varying (LDV approach, in which the parameters are dynamically modeled, the dynamics of the variation of the parameters is incorporated in the linear LQ or H-infinity design, resulting in a design that need not be locally stable, but that is guaranteed to be globally stable. Mathematically, in discrete-time (rep. continuous time), approach is characterized by functional (rep. partial differential) Riccati equations and linear matrix inequalities in sharp contrast with the "state dependent" Riccati equation of the traditional LPV theory. The major focus of attention is on the case of parameters running in a compact set and this quite naturally endows the LDV svstem with ergodic properties. Ergodic theory is "put to work" to develop a computational scheme for solving functional Riccati equations that relies crucially on the Poincare recurrence scheme. Other fixed point, continuous and differentiable selections, and Leray-Schauder degree methods are proposed as well. An example of the manifestation of the ergodic properties of the design is a "self-similar" solution to the functional Riccati equation. Next, while the LPV approach has focused on parameters running in a subset of the Euclidean space where the reference axes are taken for granted, the LDV approach on the other hand focuses on parameters running on a nontrivial (incontractible) manifold, and existence of the reference axes cannot be taken for granted. The relevant global topological property is parallelizability, that is, existence of a smooth orthonormal reference frame in the tangent space to the manifold, relative to which the linearlized state space equation are written. In case the state manifold is not parallelizable, the guiding idea to find parallelizable covering manifold on which the LDV system runs. Finally, an attempt to classifly these kind of control problems using the Godbillion-Vey characteristic classes of higher-codimenional foliation is proposed. Finally, the Gelfand-Feigin-Fuks theory of variation of characteristic classes is proposed to measure robustness and control authority. ***
9802594Jonckheere当面临控制具有未知参数的非线性动态系统的问题时,很容易计算一系列线性化近似,导出每个操作点周围的LQ、H ∞或Mu控制器,然后将所有局部稳定补偿器"缝合"在一起,形成全局工作方案。 一种这样的方法最近被称为线性参数变化(LPV)控制,其中参数是未知动态的,但被约束为位于有界集合中,其中它们的变化应该足够慢以确保自适应方案的稳定性。 基于传递轨道的跟踪问题,提出了一种线性动态变化(LDV)方法,该方法对参数进行动态建模,将参数变化的动态特性引入线性LQ或H ∞设计,使得设计不需要局部稳定,但保证全局稳定。 在数学上,在离散时间(代表连续时间),方法的特点是功能(代表偏微分)Riccati方程和线性矩阵不等式与传统的LPV理论的“状态相关”Riccati方程形成鲜明对比。 人们关注的主要焦点是参数在紧凑集中运行的情况,这很自然地赋予LDV系统遍历属性。 遍历理论是“投入工作”,以制定一个计算方案,解决功能Riccati方程,关键依赖于庞加莱递归计划。 其他不动点,连续和可微的选择,以及Leray-Schauder度的方法也被提出。 一个例子的表现形式的遍历性的设计是一个“自相似”的解决方案的功能黎卡提方程。 接下来,虽然LPV方法专注于在欧几里得空间的子集中运行的参数,其中参考轴被认为是理所当然的,但另一方面,LDV方法专注于在非平凡(不可收缩)流形上运行的参数,并且参考轴的存在不能被认为是理所当然的。 相关的全局拓扑性质是可并行性,即在流形的切空间中存在一个光滑的标准正交参考系,线性化的状态空间方程相对于该参考系被写。 在状态流形不可并行的情况下,给出了寻找LDV系统运行于其上的可并行覆盖流形的指导思想。 最后,尝试分类这类控制问题使用Godbillion-Vey特征类的高余维叶理。 最后,Gelfand-Feigin-Fuks特征类变分理论被提出来衡量鲁棒性和控制权威性。 ***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edmond Jonckheere其他文献

Edmond Jonckheere的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edmond Jonckheere', 18)}}的其他基金

IRES TRACK II: US-UK International Student Research in Robust Control of Quantum Networks
IRES TRACK II:美国-英国国际学生对量子网络鲁棒控制的研究
  • 批准号:
    1829078
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
NeTS: Small: Pareto-Optimized Heat Diffusion Protocol on Ollivier-Ricci Curvature Controlled Wireless Networks
NetS:小型:Ollivier-Ricci 曲率控制无线网络上的帕累托优化热扩散协议
  • 批准号:
    1423624
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
NetSE: Small: Load Balancing by Network Curvature Control
NetSE:小型:通过网络曲率控制进行负载平衡
  • 批准号:
    1017881
  • 财政年份:
    2010
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Computational Topology in Robust Control
鲁棒控制中的计算拓扑
  • 批准号:
    9510656
  • 财政年份:
    1995
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Algebraic and Differential Topology in Robust Control
鲁棒控制中的代数和微分拓扑
  • 批准号:
    9300016
  • 财政年份:
    1993
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Algebraic Topology in Robust Control
鲁棒控制中的代数拓扑
  • 批准号:
    9113088
  • 财政年份:
    1991
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Mathematical Sciences: T+H*H Operators in Linear-Quadratic and H-Infinity Problems
数学科学:线性二次和 H 无穷大问题中的 T H*H 算子
  • 批准号:
    8703954
  • 财政年份:
    1987
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Reduced Modelling by Optimal Hankel-Norm Phase Matching
通过最佳汉克尔范数相位匹配简化建模
  • 批准号:
    8512817
  • 财政年份:
    1986
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似海外基金

Topological aspects of quantum scars
量子疤痕的拓扑方面
  • 批准号:
    2892181
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Topological aspects of infinite group theory
无限群论的拓扑方面
  • 批准号:
    2305183
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Algorithmic, topological and geometric aspects of infinite groups, monoids and inverse semigroups
无限群、幺半群和逆半群的算法、拓扑和几何方面
  • 批准号:
    EP/V032003/1
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Fellowship
Topological and geometrical aspects of condensed matter systems
凝聚态系统的拓扑和几何方面
  • 批准号:
    2856645
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Topological aspects of higher Baire space
高贝尔空间的拓扑方面
  • 批准号:
    2594815
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Dynamical Aspects of Topological Phases
拓扑相的动力学方面
  • 批准号:
    2606484
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Study of topological aspects in image analysis: application and development of magnitude
图像分析中的拓扑方面的研究:量级的应用和发展
  • 批准号:
    21K11966
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Global Topological and Geometric aspects of AdS/CFT backgrounds.
AdS/CFT 背景的全局拓扑和几何方面。
  • 批准号:
    2288680
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Topological aspects of quantum many-body systems: Symmetry-protected ingappable phases and anomalies
量子多体系统的拓扑方面:对称保护的不可应用相和异常
  • 批准号:
    19K14608
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Geometric aspects of optical and transport phenomena in gapless topological phases
无间隙拓扑相中光学和传输现象的几何方面
  • 批准号:
    1738384
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了