Improving the Accuracy of Forecasts: A Process InterventionCombining Social Judgment Analysis and Group Facilitation

提高预测的准确性:结合社会判断分析和团体促进的过程干预

基本信息

  • 批准号:
    9122447
  • 负责人:
  • 金额:
    $ 9.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1992
  • 资助国家:
    美国
  • 起止时间:
    1992-06-01 至 1994-05-31
  • 项目状态:
    已结题

项目摘要

Considerable empirical evidence suggests that groups seldom do as well as their best members on judgement tasks. To address this problem, a Group Decision Support System (GDSS) has been developed that incorporates techniques for reducing both the problems with interaction processes and the problems with cognitive processing that groups face when making collective judgements. A preliminary evaluation of this GDSS demonstrated that the process enabled groups to perform significantly better than their most capable members on cognitive conflict tasks. However, experimental conditions were not sufficiently representative of environmental conditions to warrant broad generalization of the results. This research extends the previous work by using judgment tasks frequently faced by managerial decision makers, improving the quality of the GDSS, and increasing the motivation of the participants., In the initial phase of the study, two expert forecasting tasks will be developed for use in the experiment and professional facilitators will be hired and trained to apply the process correctly. Next, an experiment, involving 24 five-member groups, will be conducted. To ensure that participants are motivated to perform well, they will be paid differentially according to the quality of their group judgments. In the final phase of study, the process intervention will be introduced into several organizational settings.
大量经验证据表明, 以及他们最好的成员进行判断任务。 解决 针对这一问题,提出了一个群决策支持系统(GDSS), 开发了一种技术, 交互过程的问题以及 群体在集体决策时面临的认知处理 判断。 对该GDSS的初步评价表明, 这一过程使群体的表现明显改善, 在认知冲突任务中表现得更好。 然而,实验条件并不充分。 环境条件的代表,以保证广泛的 结果的推广。 这项研究扩展了 以前的工作,通过使用经常面临的判断任务, 管理决策者,提高GDSS的质量, 提高参与者的积极性。 在 在研究的初始阶段,两个专家预测任务将 开发用于实验和专业促进者 将被雇用和培训,以正确地应用该过程。 接下来, 一项涉及24个五人小组的实验将在 进行。 确保参与者有动力去执行 嗯,他们将根据质量得到不同的报酬。 他们的群体判断。 在研究的最后阶段, 过程干预将被引入到几个 组织设置。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Rohrbaugh其他文献

Negotiation Support for Multi-Party Resource Allocation: Developing Recommendation for Decreasing Transportation-Related Air Pollution in Budapest
  • DOI:
    10.1023/a:1008634121147
  • 发表时间:
    1999-01-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Thomas A. Darling;Jeryl L. Mumpower;John Rohrbaugh;Anna Vari
  • 通讯作者:
    Anna Vari

John Rohrbaugh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Rohrbaugh', 18)}}的其他基金

U.S.-Hungary Research on Conflict Resolution and Negotiation
美匈冲突解决和谈判研究
  • 批准号:
    9014357
  • 财政年份:
    1991
  • 资助金额:
    $ 9.97万
  • 项目类别:
    Standard Grant
Working Meeting on the Future of Group Decision Support Systems being held at the de Seversky Conference Center - Old Westbury, NY - April 22-24, 1987
关于群体决策支持系统的未来的工作会议于 1987 年 4 月 22 日至 24 日在纽约州旧韦斯特伯里 de Seversky 会议中心举行
  • 批准号:
    8709054
  • 财政年份:
    1987
  • 资助金额:
    $ 9.97万
  • 项目类别:
    Standard Grant
Innovation and Organizational Performance: a Study of the Implementation and Routinization of a New Information Technology
创新与组织绩效:新信息技术的实施和例行化研究
  • 批准号:
    8100384
  • 财政年份:
    1981
  • 资助金额:
    $ 9.97万
  • 项目类别:
    Standard Grant

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 9.97万
  • 项目类别:
    Collaborative R&D
Investigating the acceptability and accuracy of cervical screening and self-sampling in postnatal women to coincide with the 6-week postnatal check-up
调查产后妇女进行宫颈筛查和自我采样以配合产后 6 周检查的可接受性和准确性
  • 批准号:
    MR/X030776/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.97万
  • 项目类别:
    Research Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 9.97万
  • 项目类别:
    Continuing Grant
Sample Size calculations for UPDATing clinical prediction models to Ensure their accuracy and fairness in practice (SS-UPDATE)
用于更新临床预测模型的样本量计算,以确保其在实践中的准确性和公平性(SS-UPDATE)
  • 批准号:
    MR/Z503873/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.97万
  • 项目类别:
    Research Grant
Improving accuracy, coverage, and sustainability of functional protein annotation in InterPro, Pfam and FunFam using Deep Learning methods PID 7012435
使用深度学习方法提高 InterPro、Pfam 和 FunFam 中功能蛋白注释的准确性、覆盖范围和可持续性 PID 7012435
  • 批准号:
    BB/X018563/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.97万
  • 项目类别:
    Research Grant
Improving accuracy, coverage, and sustainability of functional protein annotation in InterPro, Pfam and FunFam using Deep Learning methods
使用深度学习方法提高 InterPro、Pfam 和 FunFam 中功能蛋白注释的准确性、覆盖范围和可持续性
  • 批准号:
    BB/X018660/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.97万
  • 项目类别:
    Research Grant
STTR Phase I: Microhydraulic Actuator for High-Accuracy, High-Speed Position Stages
STTR 第一阶段:用于高精度、高速位置平台的微液压执行器
  • 批准号:
    2335170
  • 财政年份:
    2024
  • 资助金额:
    $ 9.97万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 9.97万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
  • 批准号:
    EP/Y030990/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.97万
  • 项目类别:
    Research Grant
An innovative Lawtech AI/ML platform with human oversight that manages off-payroll worker status and periodically assesses the role status to ensure accuracy.
具有人工监督功能的创新 Lawtech AI/ML 平台,可管理工资外员工的状态并定期评估角色状态以确保准确性。
  • 批准号:
    10099483
  • 财政年份:
    2024
  • 资助金额:
    $ 9.97万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了