Properties of Correlated and Multilayer Two-Dimensional Systems
相关多层二维系统的性质
基本信息
- 批准号:9202255
- 负责人:
- 金额:$ 11.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1992
- 资助国家:美国
- 起止时间:1992-08-15 至 1996-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Theoretical investigations will be carried out on two-dimensional quantum semiconductor systems studying effects of disorder, finite temperatures and unique device structures with and without a magnetic field. The behavior of edges in the Wigner crystal regime in a strong magnetic field will be considered and a method for calculating relaxation, reconstruction and melting of the edge electrons under various circumstances will be studied. The consequences of transport and electromagnetic absorption of such effects will be considered. A detailed study of defects in the Wigner crystal will be undertaken using a variational wavefunction approach which should help determine the importance of quantum fluctuations and will be a first step in understanding both the melting transition and finite temperature transport. Edge states in the quantum Hall regime will be studied with emphasis on the effects disorder may have on the low-lying excitations of such systems. Finally, a careful study of the influence of potential inhomogeneities in a two-layer system on interplane tunneling will be undertaken. %%% This theoretical study will focus on the properties of a new state of matter associated with a gas of strongly interacting electrons confined to two-dimensions. Usually this state of matter is found at the semiconductor interface in a strong magnetic field. One possible outcome of this electron gas is to condense into a crystalline state, the Wigner crystal. The research will study the behavior of this Wigner crystal. Besides being of fundamental physical interest, there may be ramifications of this research on microelectronics.
理论研究将在二维 研究无序效应的量子半导体系统 温度和独特的器件结构, 磁场 维格纳晶体的边缘行为 将考虑在强磁场中, 计算边缘的松弛、重构和熔化 将研究各种情况下的电子。 的 这种物质的运输和电磁吸收的后果 将考虑影响。 详细研究了 维格纳晶体将采用变分波函数 这种方法应该有助于确定量子的重要性, 波动,并将是了解这两个 熔融转变和有限温度输运。 边缘态 在量子霍尔制度将研究重点放在 影响混乱可能有低的激发这样的 系统. 最后,仔细研究了势的影响 在两层系统中关于平面间隧穿的不均匀性将 进行。 %%% 这一理论研究将集中在一个新的状态的性质 与强烈相互作用的电子气体有关的物质 局限于二维空间。 通常这种物质状态 在强磁场中的半导体界面上。 一 这种电子气的可能结果是凝结成 晶体状态,维格纳晶体 该研究将研究 这种维格纳晶体的行为。 除了基本的 物理兴趣,这项研究可能会产生影响, 微电子学
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Herbert Fertig其他文献
Herbert Fertig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Herbert Fertig', 18)}}的其他基金
NSF-BSF: Quantum Electron States in van der Waals Platforms
NSF-BSF:范德华平台中的量子电子态
- 批准号:
1914451 - 财政年份:2019
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
Time Dependence and Textures in Low Dimensional Electron Systems
低维电子系统中的时间依赖性和纹理
- 批准号:
1506263 - 财政年份:2016
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
2012 Chemistry and Physics of Graphitic Carbon Materials Gordon Research Conference
2012年石墨碳材料化学与物理戈登研究会议
- 批准号:
1157585 - 财政年份:2012
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
Topological and Textured Condensed Matter Systems
拓扑和织构凝聚态物质系统
- 批准号:
1005035 - 财政年份:2010
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
Coherence and Fluctuations in Novel Multicomponent Systems
新型多组分系统的相干性和波动
- 批准号:
0704033 - 财政年份:2007
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
Defects and Fluctuations in Low-Dimensional Condensed Matter
低维凝聚态物质的缺陷和涨落
- 批准号:
0454699 - 财政年份:2004
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
Defects and Fluctuations in Low-Dimensional Condensed Matter
低维凝聚态物质的缺陷和涨落
- 批准号:
0414290 - 财政年份:2004
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
Novel States of Quantum Hall Systems
量子霍尔系统的新状态
- 批准号:
0511777 - 财政年份:2004
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
Novel States of Quantum Hall Systems
量子霍尔系统的新状态
- 批准号:
0108451 - 财政年份:2001
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
Theoretical Studies of Pinned Condensed Matter Systems
钉扎凝聚态物质系统的理论研究
- 批准号:
9870681 - 财政年份:1998
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
相似海外基金
Bloch wave interferometry in semiconductors and correlated insulators
半导体和相关绝缘体中的布洛赫波干涉测量
- 批准号:
2333941 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
Attosecond and Strong Field Physics in Correlated Multielectron System
相关多电子系统中的阿秒与强场物理
- 批准号:
2419382 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
- 批准号:
2335904 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
Nonequilibrium quantum mechanics of strongly correlated systems
强相关系统的非平衡量子力学
- 批准号:
2316598 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
- 批准号:
2335905 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
CAREER: Correlated Excitons in Semiconducting Moire Superlattices
职业:半导体莫尔超晶格中的相关激子
- 批准号:
2337606 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
Cross-correlated optical responses of magnetic excitons in atomic-layer magnetoelectrics
原子层磁电中磁激子的互相关光学响应
- 批准号:
24K17019 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CDS&E:CAS:Automated Embedded Correlated Wavefunction Theory for Kinetic Modeling in Heterogeneous Catalysis
CDS
- 批准号:
2349619 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
Bulk-edge correspondence and symmetry of strongly correlated topological pump
强相关拓扑泵的体边对应和对称性
- 批准号:
23H01091 - 财政年份:2023
- 资助金额:
$ 11.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exploring Novel Phenomena in Correlated Quantum Systems
探索相关量子系统中的新现象
- 批准号:
2889881 - 财政年份:2023
- 资助金额:
$ 11.4万 - 项目类别:
Studentship