Mathematical Sciences: The Geometry of Cycle Spaces and Moduli Spaces

数学科学:循环空间和模空间的几何

基本信息

  • 批准号:
    9204735
  • 负责人:
  • 金额:
    $ 21.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1992
  • 资助国家:
    美国
  • 起止时间:
    1992-08-01 至 1996-07-31
  • 项目状态:
    已结题

项目摘要

The principal investigators will continue their investigation of problems in differential and algebraic geometry. In particular they will investigate the structure of Chow varieties via the method of characteristic classes. Results are expected to have relationships with Bott periodicity, the Hodge conjecture, and the Schubert calculus. This award will support research in the general area of differential geometry and global analysis. Differential geometry is the study of the relationship between the geometry of a space and analytic concepts defined on the space. Global analysis is the study of the overall geometric and topological properties of a space by piecing together local information. Applications of these areas of mathematics in other sciences include the structure of complicated molecules, liquid-gas boundaries, and the large scale structure of the universe.
主要调查人员将继续他们的 研究微分和代数几何中的问题。 特别是他们将调查的结构, 通过特征类的方法对品种进行分类。结果 预计与博特周期性,霍奇 猜想和舒伯特演算。 该奖项将支持一般领域的研究, 微分几何和全局分析。微分几何 是研究空间的几何形状 和空间上定义的分析概念。全球分析是 对物体的整体几何和拓扑性质的研究 一个空间,通过拼凑当地的信息。的应用 这些数学领域的其他科学包括 复杂的分子结构,液-气边界, 宇宙的大尺度结构

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

H. Blaine Lawson其他文献

Approximation by positive mean curvature immersions: frizzing
  • DOI:
    10.1007/bf01388831
  • 发表时间:
    1984-10-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    H. Blaine Lawson;Marie-Louise Michelsohn
  • 通讯作者:
    Marie-Louise Michelsohn
Determinant majorization and the work of Guo-Phong-Tong and Abja-OLive
Moving algebraic cycles of bounded degree
  • DOI:
    10.1007/s002220050219
  • 发表时间:
    1998-04-14
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Eric M. Friedlander;H. Blaine Lawson
  • 通讯作者:
    H. Blaine Lawson
Graph mappings and Poincaré duality
  • DOI:
    10.1007/s00208-008-0278-4
  • 发表时间:
    2008-10-02
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Eric M. Friedlander;H. Blaine Lawson
  • 通讯作者:
    H. Blaine Lawson
Embedding and surrounding with positive mean curvature
  • DOI:
    10.1007/bf01388830
  • 发表时间:
    1984-10-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    H. Blaine Lawson;Marie-Louise Michelsohn
  • 通讯作者:
    Marie-Louise Michelsohn

H. Blaine Lawson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('H. Blaine Lawson', 18)}}的其他基金

Singularities and Collapsing in G2 Manifolds
G2 流形中的奇点和塌缩
  • 批准号:
    1608143
  • 财政年份:
    2016
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Standard Grant
Cycles, Nonlinear Differential Equations, and Geometric Pluripotential Theory
循环、非线性微分方程和几何多能理论
  • 批准号:
    1301804
  • 财政年份:
    2013
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Standard Grant
Cycles, Plurisubharmonic Functions and Nonlinear Equations in Geometry
几何中的循环、多次谐波函数和非线性方程
  • 批准号:
    1004171
  • 财政年份:
    2010
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Continuing Grant
Cycles, Characters and Pluripotential Theory in Calibrated Geometry
校准几何中的循环、特征和多能理论
  • 批准号:
    0705467
  • 财政年份:
    2007
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Continuing Grant
Research Training in Geometry at the Interface with Physics
几何与物理交叉的研究培训
  • 批准号:
    0502267
  • 财政年份:
    2005
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Standard Grant
Cycles, characters and global geometry
循环、字符和全局几何
  • 批准号:
    0404766
  • 财政年份:
    2004
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Continuing Grant
Cycles, Differential Characters and Global Problems in Geometry
几何中的循环、微分特征和全局问题
  • 批准号:
    0102525
  • 财政年份:
    2001
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Continuing Grant
Cycles, Residues & Global Problems in Geometry
循环、残留
  • 批准号:
    9802054
  • 财政年份:
    1998
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Continuing Grant
U.S.-Brazil Cooperative Project in Differential Geometry
美国-巴西微分几何合作项目
  • 批准号:
    9600220
  • 财政年份:
    1996
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Cycles, Residues & Global Problems in Geometry
数学科学:循环、留数
  • 批准号:
    9505174
  • 财政年份:
    1995
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Continuing Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Conference on Symplectic Geometry and Topology at the International Center for Mathematical Sciences
国际数学科学中心辛几何和拓扑会议
  • 批准号:
    1608194
  • 财政年份:
    2016
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Hodge Theory, Complex Geometry, and Representation Theory
NSF/CBMS 数学科学区域会议 - 霍奇理论、复几何和表示论
  • 批准号:
    1137952
  • 财政年份:
    2012
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Standard Grant
IGERT: Geometry and Dynamics -- Integrated Education in the Mathematical Sciences
IGERT:几何与动力学——数学科学综合教育
  • 批准号:
    1068620
  • 财政年份:
    2011
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Continuing Grant
CBMS Regional Conference in the Mathematical Sciences - "Families of Riemann surfaces and Weil-Petersson Geometry'' - Summer 2009; New Britain, CT
CBMS 数学科学区域会议 -“黎曼曲面家族和 Weil-Petersson 几何” - 2009 年夏季;康涅狄格州新不列颠
  • 批准号:
    0834134
  • 财政年份:
    2009
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Tropical Geometry & Mirror Symmetry, December 13-17, 2008
NSF/CBMS 数学科学区域会议:热带几何
  • 批准号:
    0735319
  • 财政年份:
    2008
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: The Interplay Between Convex Geometry and Harmonic Analysis, July 29 - August 2, 2006
NSF/CBMS 数学科学区域会议:凸几何与调和分析之间的相互作用,2006 年 7 月 29 日至 8 月 2 日
  • 批准号:
    0532656
  • 财政年份:
    2006
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Fully Nonlinear Equations in Geometry
NSF/CBMS 数学科学区域会议:几何中的完全非线性方程
  • 批准号:
    0225735
  • 财政年份:
    2003
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Dynamics, Hyperbolic Geometry and Quasiconformal Maps
数学科学:动力学、双曲几何和拟共形映射
  • 批准号:
    9996234
  • 财政年份:
    1998
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: The Geometry of Kernel Subgroups of Nonpositively Curved Cube Complex Groups
数学科学:非正曲立方复群核子群的几何
  • 批准号:
    9996342
  • 财政年份:
    1998
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Hamiltonian Theory of Soliton Equations and Geometry of Moduli Spaces
数学科学:孤子方程哈密顿理论和模空间几何
  • 批准号:
    9802577
  • 财政年份:
    1998
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了