Mathematical Sciences: Spectral Asymptotics of Toeplitz and Pseudodifferential Operators

数学科学:Toeplitz 和伪微分算子的谱渐进

基本信息

  • 批准号:
    9216103
  • 负责人:
  • 金额:
    $ 10.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1992
  • 资助国家:
    美国
  • 起止时间:
    1992-08-15 至 1996-07-31
  • 项目状态:
    已结题

项目摘要

This work continues mathematical research into the asymptotic expansions of certain differential and pseudodifferential operators. When one transforms a differential operator by means of a classical transform, the operator often appears as a multiplier of the transformed solution. This multiplier becomes the symbol of the operator. The asymptotic expansion of smooth and nonsmooth symbols has been obtained in different contexts. One barrier to going further has been the lack of method of stationary phase for integrls with a nonsmooth amplitude fundtion. Recent developments now allow one to derive complete expansions for certain classes of discontinuous symbols. It is the purpose of this work to continue in this direction, taking on more difficult and more interesting cases. Ultimately one will look for a precise general theory.
这项工作继续数学研究到 某些微分的渐近展开式, 伪微分算子 当一个微分变换 通过经典变换,该算子通常 显示为变换后的解的乘数。 这 乘数成为运算符的符号。 渐近 光滑和非光滑符号的扩展已在 不同的背景。 进一步发展的一个障碍是, 一类非光滑积分驻相法缺乏 振幅函数 最近的事态发展使人们可以得出 某些类别的不连续符号的完全扩展。 这项工作的目的是继续朝这个方向努力, 接手更困难更有趣的案子 最终 人们将寻找一个精确的一般理论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Harold Widom其他文献

Random Unitary Matrices, Permutations and Painlevé
Asymptotics in ASEP with Step Initial Condition
On the eigenvalues of certain canonical higher-order ordinary differential operators
  • DOI:
    10.1016/j.jmaa.2005.09.080
  • 发表时间:
    2006-10-15
  • 期刊:
  • 影响因子:
  • 作者:
    Albrecht Böttcher;Harold Widom
  • 通讯作者:
    Harold Widom
Spectral asymptotics of hypersurfaces
Fredholm determinants and the mKdV/Sinh-Gordon hierarchies

Harold Widom的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Harold Widom', 18)}}的其他基金

Integrable Systems, Integral Operators, and Probabilistic Models
可积系统、积分算子和概率模型
  • 批准号:
    1400248
  • 财政年份:
    2014
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
Integrable Systems, Operator Determinants, and Probabilistic Models
可积系统、算子决定因素和概率模型
  • 批准号:
    0854934
  • 财政年份:
    2009
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant
Random Matrices, Integrable Systems and Related Stochastic Processes
随机矩阵、可积系统和相关随机过程
  • 批准号:
    0552388
  • 财政年份:
    2006
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
Research in Random Matrices and Integrable Systems
随机矩阵和可积系统研究
  • 批准号:
    0243982
  • 财政年份:
    2003
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
Research in Random Matrices and Integrable Systems
随机矩阵和可积系统研究
  • 批准号:
    9732687
  • 财政年份:
    1998
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Research in Random Matrices and Spectral Asymptotics
数学科学:随机矩阵和谱渐近学研究
  • 批准号:
    9424292
  • 财政年份:
    1995
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Spectral Asymptotics of Toeplitz andPseudodifferential Operators
数学科学:Toeplitz 和伪微分算子的谱渐进
  • 批准号:
    8822906
  • 财政年份:
    1989
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Spectral Asymptotics of Pseudodifferential Operators.
数学科学:伪微分算子的谱渐进。
  • 批准号:
    8700901
  • 财政年份:
    1987
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Spectral Asymptotics of Pseudodifferential Operators
数学科学:伪微分算子的谱渐进
  • 批准号:
    8601605
  • 财政年份:
    1986
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Spectral Asymptotics of Pseudodifferential Operators
数学科学:伪微分算子的谱渐进
  • 批准号:
    8217052
  • 财政年份:
    1983
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

NSF/CBMS Regional Conference in the Mathematical Sciences, Using Spectral Data to Solve Inverse Problems, December 14-18, 2001
NSF/CBMS 数学科学区域会议,使用谱数据解决反问题,2001 年 12 月 14-18 日
  • 批准号:
    0085884
  • 财政年份:
    2001
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Spectral Operators Generated by Damped Hyperbolic Equations
数学科学:由阻尼双曲方程生成的谱算子
  • 批准号:
    9706882
  • 财政年份:
    1997
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Spectral Properties of Random Media
数学科学:随机介质的谱特性
  • 批准号:
    9707049
  • 财政年份:
    1997
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Spectral Geometry of Compact Riemannian Manifolds and Kleinian Groups
数学科学:紧致黎曼流形和克莱因群的谱几何
  • 批准号:
    9707051
  • 财政年份:
    1997
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Fast Spectral-Galerkin Algorithms for Elliptic Problems and Efficient Solution Techniques for Unsteady Navier-Stokes Equations
数学科学:椭圆问题的快速谱伽辽金算法和非定常纳维-斯托克斯方程的高效求解技术
  • 批准号:
    9623020
  • 财政年份:
    1996
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: NSF/CBMS Regional Conference in the Mathematical Sciences--Spectral Problems in Geometry and Arithmetic--August18-22, 1997
数学科学:NSF/CBMS 数学科学区域会议——几何和算术中的谱问题——1997 年 8 月 18 日至 22 日
  • 批准号:
    9612075
  • 财政年份:
    1996
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Inverse Spectral Problems and Meromorphic Solutions of Differential Equations
数学科学:反谱问题和微分方程的亚纯解
  • 批准号:
    9623121
  • 财政年份:
    1996
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Spectral and Fractal Geometry: Analysis on Fractals, Noncommutative Geometry, and PDEs in the Fractal Domain
数学科学:谱和分形几何:分形域中的分形、非交换几何和偏微分方程分析
  • 批准号:
    9623002
  • 财政年份:
    1996
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences "Advances in Inverse Spectral Geometry"
NSF/CBMS 数学科学区域会议“逆谱几何的进展”
  • 批准号:
    9523118
  • 财政年份:
    1996
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Determinants and Other Spectral Invariants for Elliptic and Toeplitz Operators on Manifolds
数学科学:流形上椭圆和托普利茨算子的行列式和其他谱不变量
  • 批准号:
    9506057
  • 财政年份:
    1995
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了