Amplification and Refinement of Bayesian Scientific Methodology

贝叶斯科学方法论的放大和完善

基本信息

  • 批准号:
    9223678
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1993
  • 资助国家:
    美国
  • 起止时间:
    1993-06-15 至 1994-05-31
  • 项目状态:
    已结题

项目摘要

Scientific inference, the process of going from particular instances to general laws, has been a matter of philosophical concern since the time of Aristotle. Not until Thomas Bayes (1763), however, was there any explicit method presented to use probability theory to justify the inference from particulars to general laws. The entire family of Bayesian scientific methodologies formulates scientific inference in terms of the concept of epistemic probability, considers the prior probability of scientific hypothesis to be a meaningful concept, and makes use of Bayes's theorem for evaluating posterior probabilities. A version of Bayesianism proposed by Professor Shimony in 1970, called "tempered personalism," recommends that personal probability evaluations be "tempered" by openmindedness towards all seriously proposed hypotheses in an investigation. Among the virtues of tempered personalism is the possibility of arriving at a non- negligible posterior probability for a strong scientific generalization. There are, however, some weaknesses in tempered personalism which require modifications: notably, a difficulty in justifying the axioms of probability, the vagueness of "seriously proposed," and uncertainty regarding the evaluation of the "catch- all" hypothesis. Under this grant, Professor Shimony, working with two graduate students, is amplifying and refining his original positions to take account of these difficulties. He expects to remove the first difficulty by a procedure of "tempering without tempering." He believes the second and third difficulties are ameliorated by properly combining analytic propositions of probability with a posteriori principles. He and his students are undertaking a number of scientific case studies for the purpose both of illustrating the power of this refined methodology and for heuristics in formulating the a posteriori principles in inductive inference.
自亚里士多德时代以来,科学推理,即从特定实例到一般规律的过程,一直是哲学关注的问题。然而,直到托马斯·贝叶斯(1763年),才有任何明确的方法被提出,用概率论来证明从具体到一般规律的推理是正确的。整个贝叶斯科学方法论家族用认知概率的概念来表述科学推理,认为科学假设的先验概率是一个有意义的概念,并利用贝叶斯定理来评估后验概率。希蒙尼教授在1970年提出的贝叶斯主义的一个版本,被称为“温和的个人主义”,建议个人的概率评估应该通过对调查中所有严肃提出的假设持开放态度来“缓和”。在缓和的个人主义的优点中,有可能得出一个强大的科学概括的不可忽略的后验概率。然而,温和的个人主义也有一些需要修改的弱点:值得注意的是,很难证明概率公理的合理性,“认真提出”的含糊不清,以及对“包罗万象”假设的评估的不确定性。在这笔赠款下,希蒙尼教授与两名研究生一起工作,正在扩大和完善他最初的立场,以考虑到这些困难。他希望通过“回火不回火”的方法来消除第一个困难。他认为,通过将概率分析命题与后验原理恰当地结合起来,第二和第三个困难可以得到改善。他和他的学生正在进行一些科学案例研究,目的既是为了说明这种精炼的方法论的力量,也是为了启发式地在归纳推理中制定后验原理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Abner Shimony其他文献

Reply to Sober
  • DOI:
    10.1007/bf02426628
  • 发表时间:
    1989-07-01
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    Abner Shimony
  • 通讯作者:
    Abner Shimony
Comments on the papers of prof. S. Schiller and prof. A. Siegel
  • DOI:
    10.1007/bf00881993
  • 发表时间:
    1962-09-01
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Abner Shimony
  • 通讯作者:
    Abner Shimony
That there exists no greatest prime
  • DOI:
    10.1007/bf00414285
  • 发表时间:
    1992-09-01
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Abner Shimony
  • 通讯作者:
    Abner Shimony
The status of the principle of maximum entropy
  • DOI:
    10.1007/bf00485954
  • 发表时间:
    1985-04-01
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Abner Shimony
  • 通讯作者:
    Abner Shimony
A Bayesian examination of time-symmetry in the process of measurement
对测量过程中时间对称性的贝叶斯检验
  • DOI:
    10.1007/bf00276798
  • 发表时间:
    1996-11-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Abner Shimony
  • 通讯作者:
    Abner Shimony

Abner Shimony的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Abner Shimony', 18)}}的其他基金

Research in the Foundations of Quantum Mechanics
量子力学基础研究
  • 批准号:
    9321992
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Foundations of Quantum Mechanics (Physics)
量子力学基础(物理学)
  • 批准号:
    9022345
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Investigations of Time
时间调查
  • 批准号:
    8908264
  • 财政年份:
    1989
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Modified Quantum Dynamics and the Measurement Problem
修正的量子动力学和测量问题
  • 批准号:
    8810713
  • 财政年份:
    1988
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Scientific Methodology
科学方法论
  • 批准号:
    8309118
  • 财政年份:
    1983
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Scientific Inference
科学推论
  • 批准号:
    8204629
  • 财政年份:
    1982
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Scientific Methodology
科学方法论
  • 批准号:
    8104577
  • 财政年份:
    1981
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Foundations of Quantum Mechanics
量子力学基础
  • 批准号:
    7908987
  • 财政年份:
    1979
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Foundations of Quantum Mechanics and Probability Theory
量子力学和概率论基础
  • 批准号:
    7503762
  • 财政年份:
    1975
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Thermo-Mechanical Separation by Atomic Diffusion for Refinement and Recycling of Alloys
通过原子扩散进行热机械分离,用于合金的精炼和回收
  • 批准号:
    2311311
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Bond Strengthening and Grain Size Refinement in Superhard Metal Borides
超硬金属硼化物中的键强化和晶粒尺寸细化
  • 批准号:
    2312942
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Development, Evaluation and Refinement of Metalloenediyne Complex Cyclization Kinetics for Biological Applications
用于生物应用的金属烯二炔络合物环化动力学的开发、评估和完善
  • 批准号:
    2247314
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Refinement and q-deformation of topological recursion and their applications
拓扑递归的细化和q变形及其应用
  • 批准号:
    23K12968
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of tools for rapid systematic refinement of in vivo gene editing technologies
开发用于快速系统完善体内基因编辑技术的工具
  • 批准号:
    10740025
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
CAREER: Robot Learning of Complex Tasks via Skill Reusability and Refinement
职业:机器人通过技能的可重用性和改进来学习复杂的任务
  • 批准号:
    2237463
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
The Emergence and Refinement of Grammars: perspectives from syntax and phonology
语法的出现和完善:句法和音韵学的视角
  • 批准号:
    2890509
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
VERGE - Valve Edge Matching Refinement for Greater Efficiency
VERGE - 阀门边缘匹配细化以提高效率
  • 批准号:
    10073937
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Refinement of marine nitrogen isoscapes as a basis for Iso-logging
作为等值测井基础的海洋氮等值图的细化
  • 批准号:
    23H03535
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Understanding and supporting self-harm recovery through qualitative survivor research: development and refinement of the Self-Harm Recovery Mode
通过定性幸存者研究理解和支持自残康复:自残康复模式的开发和完善
  • 批准号:
    2889169
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了