Mathematical Sciences: Topology of Complex Projective Curves and Surfaces

数学科学:复杂射影曲线和曲面的拓扑

基本信息

  • 批准号:
    9307896
  • 负责人:
  • 金额:
    $ 6.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1993
  • 资助国家:
    美国
  • 起止时间:
    1993-09-01 至 1995-02-28
  • 项目状态:
    已结题

项目摘要

9307896 Hironaka This awards supports the research of Professor E. Hironaka to work in algebraic geometry. Topics to be studied include the geometry of complex varieties, especially smooth surfaces and embedded curves. In particular she hopes to find ways to compute Betti numbers for these geometric objects. The research is in the field of algebraic geometry, one of the oldest parts of modern mathematics, but one which blossomed to the point where it has, in the past 10 years, solved problems that have stood for centuries. Originally, it treated figures defined in the plane by the simplest of equations, namely polynomials. Today, the field uses methods not only from algebra, but also from analysis and topology, and conversely it is extensively used in those fields. Moreover it has proved itself useful in fields as diverse as physics, theoretical computer science, cryptography, coding theory and robotics. ***
9307896 Hironaka本奖项支持E. Hironaka教授在代数几何方面的研究工作。要研究的主题包括复杂品种的几何,特别是光滑表面和嵌入曲线。她特别希望找到计算这些几何物体的贝蒂数的方法。这项研究是在代数几何领域进行的,代数几何是现代数学中最古老的部分之一,但在过去的10年里,它已经发展到解决了几个世纪以来一直存在的问题的程度。最初,它用最简单的方程,即多项式来处理平面上定义的图形。今天,该领域不仅使用代数的方法,而且还使用分析和拓扑的方法,相反,它在这些领域中被广泛使用。此外,它已被证明在物理学、理论计算机科学、密码学、编码理论和机器人等多种领域都很有用。***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eriko Hironaka其他文献

A family of pseudo-Ansoov braids with small dilatation
具有小扩张的伪安索夫辫子家族
The ratio of the topological entropy to the volume for pseudo-Anosov braids
伪阿诺索夫辫子的拓扑熵与体积之比
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eriko Hironaka;Eiko Kin;金 英子;Eiko Kin;Eiko Kin
  • 通讯作者:
    Eiko Kin
曲面上の同相写像の周期軌道と擬アノソフ型の組みひもについて
曲面上同胚映射和伪阿诺索夫型辫子的周期轨道
Polynomial periodicity for Betti numbers of covering surfaces
  • DOI:
    10.1007/bf02100607
  • 发表时间:
    1992-12-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Eriko Hironaka
  • 通讯作者:
    Eriko Hironaka
A family of pseudo-Anosov braids with small dilatation
小扩张的伪阿诺索夫辫子家族

Eriko Hironaka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eriko Hironaka', 18)}}的其他基金

Topology of Algebraic Varieties
代数簇的拓扑
  • 批准号:
    0855500
  • 财政年份:
    2009
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Conference on Symplectic Geometry and Topology at the International Center for Mathematical Sciences
国际数学科学中心辛几何和拓扑会议
  • 批准号:
    1608194
  • 财政年份:
    2016
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Standard Grant
Topology Conferences at the Pacific Institute for the Mathematical Sciences
太平洋数学科学研究所的拓扑会议
  • 批准号:
    1506202
  • 财政年份:
    2015
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Standard Grant
CBMS Regional Conference in the Mathematical Sciences: Algebraic Topology in Applied Mathematics; Summer 2009, Cleveland, OH
CBMS 数学科学区域会议:应用数学中的代数拓扑;
  • 批准号:
    0834140
  • 财政年份:
    2009
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Topology, C*- algebras, and String Duality, June 2008
NSF/CBMS 数学科学区域会议:拓扑、C*- 代数和弦对偶性,2008 年 6 月
  • 批准号:
    0735233
  • 财政年份:
    2008
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
  • 批准号:
    0196235
  • 财政年份:
    2000
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
  • 批准号:
    9996368
  • 财政年份:
    1998
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Low-Dimensional Topology and Gauge Theory
数学科学:低维拓扑和规范论
  • 批准号:
    9896376
  • 财政年份:
    1998
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometry and Low-Dimensional Topology in Group Theory
数学科学:群论中的几何和低维拓扑
  • 批准号:
    9703756
  • 财政年份:
    1997
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Low-Dimensional Geometry and Topology
数学科学:低维几何和拓扑
  • 批准号:
    9704135
  • 财政年份:
    1997
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: The 1997 Spring Topology and Dynamics Conference
数学科学:1997 年春季拓扑与动力学会议
  • 批准号:
    9614982
  • 财政年份:
    1997
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了