Mathematical Sciences: Waves and Diffusion in Random Media

数学科学:随机介质中的波和扩散

基本信息

  • 批准号:
    9308471
  • 负责人:
  • 金额:
    $ 4.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1993
  • 资助国家:
    美国
  • 起止时间:
    1993-07-01 至 1994-12-31
  • 项目状态:
    已结题

项目摘要

The proposed research has three components: (a) The study of direct and inverse problems for acoustic pulse reflection from randomly layered media, (b) the study of the focusing singularity of the nonlinear Schroedinger and related equations, and (c) convection enhanced diffusion. In pulse reflection a statistical theory will be developed for reflected signals generated by pulses emitted by a point source located on the surface or above a randomly layered half space. The range of validity of the theory, based on the asymptotic theory of stochastic equations, will be explored with numerical simulations. For pulsed plane waves incident on a randomly layered half space, a number of statistical inverse problems will be formulated and solved, where properties of the medium are based on the statistics of the observed reflected signals. The work on pulse reflection is of direct interest in exploration seismology and to a lesser extent in connection with the detection of seismic events that are natural or man-made. The work on the nonlinear Schroedinger equation is useful in nonlinear optics for laser surgery, for example, and in laser fusion. The work on convection-diffusion is useful in the study of dispersion of pollutants in various environments such as the ocean and the atmosphere.
该研究包括三个部分:(A)随机层状介质中声脉冲反射的正问题和反问题的研究;(B)非线性薛定谔方程和相关方程聚焦奇异性的研究;(C)对流增强扩散问题的研究。在脉冲反射中,将为由位于表面或随机分层的半空间上方的点源发射的脉冲产生的反射信号开发统计理论。该理论基于随机方程的渐近理论,将通过数值模拟来探索其有效性范围。对于入射到随机分层半空间上的脉冲平面波,将建立和求解一系列统计反问题,其中介质的性质基于观测到的反射信号的统计。脉冲反射方面的工作直接关系到勘探地震学,在较小程度上与探测自然或人为地震事件有关。例如,关于非线性薛定谔方程的工作在激光外科的非线性光学和激光聚变中是有用的。对流扩散方面的工作有助于研究污染物在海洋和大气等各种环境中的扩散。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George Papanicolaou其他文献

Correlation-informed ordered dictionary learning for imaging in complex media.
用于复杂媒体成像的相关性有序字典学习。
Carbon Dioxide/Digital Subtraction Arteriography–Assisted Transluminal Angioplasty
  • DOI:
    10.1007/bf02143858
  • 发表时间:
    1995-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Joseph H. Frankhouse;Michael G. Ryan;George Papanicolaou;Albert E. Yellin;Fred A. Weaver
  • 通讯作者:
    Fred A. Weaver
Robust imaging of localized scatterers using the singular value decomposition and ℓ1 minimization
使用奇异值分解和 ℓ1 最小化对局域散射体进行鲁棒成像
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Chai;Miguel Moscoso;George Papanicolaou
  • 通讯作者:
    George Papanicolaou
DIFFICULT PERIPHERAL VASCULAR INJURIES
  • DOI:
    10.1016/s0039-6109(05)70484-9
  • 发表时间:
    1996-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Fred A. Weaver;George Papanicolaou;Albert E. Yellin
  • 通讯作者:
    Albert E. Yellin
Combined Use of Iliac Artery Angioplasty and Infrainguinal Revascularization for Treatment of Multilevel Atherosclerotic Disease
  • DOI:
    10.1007/s100169900219
  • 发表时间:
    1999-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Gary Siskin;R. Clement Darling;Brian Stainken;Benjamin B. Chang;Philip S.K. Paty;Paul B. Kreienberg;George Papanicolaou;Dhiraj M. Shah
  • 通讯作者:
    Dhiraj M. Shah

George Papanicolaou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('George Papanicolaou', 18)}}的其他基金

Collaborative Research: FRG: Time Reversal Techniques in Radar and Radio Communications
合作研究:FRG:雷达和无线电通信中的时间反转技术
  • 批准号:
    0354674
  • 财政年份:
    2004
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
A Proposal for Research in Waves in Random Media and Applications
随机介质中的波研究及其应用的提案
  • 批准号:
    9971972
  • 财政年份:
    1999
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences/GIG: Mathematical Problems in Geophysics and Seismology
数学科学/GIG:地球物理学和地震学中的数学问题
  • 批准号:
    9709320
  • 财政年份:
    1997
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Waves and Diffusion in Random Media
数学科学:随机介质中的波和扩散
  • 批准号:
    9622854
  • 财政年份:
    1996
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Transport Theory for Seismic Wave Propagation
数学科学:地震波传播的输运理论
  • 批准号:
    9419084
  • 财政年份:
    1995
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Waves and Diffusion in Random Media
数学科学:随机介质中的波和扩散
  • 批准号:
    9496212
  • 财政年份:
    1994
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Continuing Grant
CISE Research Instrumentation
CISE 研究仪器
  • 批准号:
    9222830
  • 财政年份:
    1993
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Linear and Nonlinear Waves in Random Media
数学科学:随机介质中的线性波和非线性波
  • 批准号:
    9003227
  • 财政年份:
    1990
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Mathematical Problems in Materials Science and Multiphase Flow
数学科学:材料科学和多相流中的数学问题
  • 批准号:
    8701895
  • 财政年份:
    1987
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Continuing Grant
U.S.-France Joint Seminar: Macroscopic Modeling of Turbulent Flows, December 1984, at Sophia-Antipolis, France
美法联合研讨会:湍流宏观建模,1984 年 12 月,法国索菲亚安提波利斯
  • 批准号:
    8413892
  • 财政年份:
    1985
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

NSF/CBMS Regional Conference in the Mathematical Sciences - "Solitons in Two-Dimensional Water Waves and Applications to Tsunami"
NSF/CBMS 数学科学区域会议 - “二维水波中的孤子及其在海啸中的应用”
  • 批准号:
    1241307
  • 财政年份:
    2012
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis - Spring 2010
CBMS 数学科学区域会议 - 非线性水波及其在波流相互作用和海啸中的应用 - 2010 年春季
  • 批准号:
    0938266
  • 财政年份:
    2010
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Coupling of Long Internal Waves with Small-Scale Disturbances
数学科学:长内波与小尺度扰动的非线性耦合
  • 批准号:
    9701967
  • 财政年份:
    1997
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Study of Nonlinear Waves in Compressible Flows and Mechanics
数学科学:可压缩流动和力学中的非线性波研究
  • 批准号:
    9623025
  • 财政年份:
    1996
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Dispersive Waves
数学科学:非线性色散波
  • 批准号:
    9600128
  • 财政年份:
    1996
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Waves and Diffusion in Random Media
数学科学:随机介质中的波和扩散
  • 批准号:
    9622854
  • 财政年份:
    1996
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Analysis on Waves in Stratified Fluids of Infinite Depth
数学科学:无限深度分层流体中的波分析
  • 批准号:
    9623060
  • 财政年份:
    1996
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Study of Model Equations For Water Waves
数学科学:水波模型方程的研究
  • 批准号:
    9622858
  • 财政年份:
    1996
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Equilibria Instabilities and Waves in Fluids and Plasmas
数学科学:流体和等离子体中的平衡不稳定性和波动
  • 批准号:
    9623033
  • 财政年份:
    1996
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Traveling Waves in Excitable Media
数学科学:可激发介质中的行波
  • 批准号:
    9525766
  • 财政年份:
    1996
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了