Quantum Operator Approaches to Multidimensional Reaction Dynamics

多维反应动力学的量子算子方法

基本信息

项目摘要

Steven Schwartz is supported by a grant from the Theoretical and Computational Chemistry Program to perform theoretical research in the application of evolution operators to condensed phase systems consisting of a few quantum degrees of freedom in contact with a solvent bath. This model is useful for theoretical treatments of chemical reactions in the presence of solvent. Schwartz has developed a propagator expansion resummation technique which shows significant promise in terms of improved accuracy and range of applicability for treating many dimensional chemical reactions. He plans to apply this theory to the elucidation of the mechanism of rate processes in multiple pulse ligand photolysis experiments on hemoglobin. A great deal of progress has been made in the theoretical treatment of gas phase chemical reactions of systems consisting of relatively few atoms. Using state-of-the-art theoretical methods, it is now possible to explain a great deal of the experimental detail for such systems. However, the large majority of reactions which are of interest to chemists occur in condensed phase systems in the presence of solvent. The theoretical models for treating such complex systems are in a much earlier stage of development. Schwartz is developing new theoretical approaches for dealing with solvated chemical systems undergoing chemical reactions where quantum effects may be important.
Steven Schwartz得到了理论和计算化学计划的资助,以进行理论研究,将演化算子应用于由与溶剂浴接触的几个量子自由度组成的凝聚相系统。该模型对溶剂存在下的化学反应的理论处理是有用的。Schwartz开发了一种传播子展开重建技术,该技术在提高精度和适用范围方面显示出显着的前景,用于处理多维化学反应。他计划将这一理论应用于阐明血红蛋白多脉冲配体光解实验中的速率过程机制。在由相对较少的原子组成的系统的气相化学反应的理论处理方面已经取得了很大的进展。使用最先进的理论方法,现在可以解释这种系统的大量实验细节。然而,化学家感兴趣的绝大多数反应都发生在溶剂存在下的凝聚相体系中。处理这种复杂系统的理论模型还处于发展的早期阶段。施瓦茨正在开发新的理论方法来处理溶剂化化学系统进行化学反应,量子效应可能是重要的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Schwartz其他文献

Realtime intracardiac two-dimensional echocardiography in the catheterization laboratory in humans
  • DOI:
    10.1016/0735-1097(90)91784-r
  • 发表时间:
    1990-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew Waintraub;Natesa Pandian;Deeb Salem;Steven Schwartz;Marvin Konstam;Vic Millen
  • 通讯作者:
    Vic Millen
IMPROVING SURVIVAL BY TARGETING ERRORS
  • DOI:
    10.1016/s0735-1097(12)60739-6
  • 发表时间:
    2012-03-27
  • 期刊:
  • 影响因子:
  • 作者:
    Frederic Jacques;Osami Honjo;Michael-Alice Moga;Francesco Grasso;Kenji Baba;Edward Hickey;Tilman Humpl;Steven Schwartz;Christopher Caldarone;Andrew Redington;Glen Van Arsdell
  • 通讯作者:
    Glen Van Arsdell
1021-54 Multiplane Transesophageal Echo Has a Greater Impact on Clinical Care than Biplane: The VOTE Study
  • DOI:
    10.1016/0735-1097(95)93110-x
  • 发表时间:
    1995-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Martin E. Goldman;Steven Goldstein;Itzhak Kronzon;Benico Barzilai;Ravin Davidoff;Anthony DeMaria;Howard Dittrich;Shunichi Homma;Michael Motro;Natesa Pandian;Michael Picard;Stacey Rosen;Steven Schwartz;Paul A. Tunick;Zvi Vered;Gad Keren;David Vorchheimer;Larry Baruch;Oma David;Jacqueline Budd
  • 通讯作者:
    Jacqueline Budd
STANDARDIZATION OF PERI-OPERATIVE MANAGEMENT AFTER NORWOOD OPERATION HAS NOT IMPROVED 1 YEAR OUTCOMES
  • DOI:
    10.1016/s0735-1097(17)34016-0
  • 发表时间:
    2017-03-21
  • 期刊:
  • 影响因子:
  • 作者:
    Shilpa Shah;Steven Schwartz;Andrew Goodwin;Osami Honjo;Glen Van Arsdell;Mike Seed;Jennifer Russell;Alejandro Floh
  • 通讯作者:
    Alejandro Floh
642: The Presence of Concurrent Atypia in Patients with Prostatic Intraepithelial Neoplasia Found on Extended Core Biopsy Predicts for Cancer on Repeat Biopsy
  • DOI:
    10.1016/s0022-5347(18)37904-7
  • 发表时间:
    2004-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Joel Slaton;Nissrine Nakib;Neil Wasserman;Steven Schwartz
  • 通讯作者:
    Steven Schwartz

Steven Schwartz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Schwartz', 18)}}的其他基金

UKRI/BBSRC-NSF/BIO: Evolving quantum mechanical tunnelling in enzymes
UKRI/BBSRC-NSF/BIO:酶中量子力学隧道效应的演变
  • 批准号:
    2244981
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Imperial College Astrophysics & Space Physics Consolidated Grant April 2013 - March 2016
帝国理工学院天体物理学
  • 批准号:
    ST/K001051/1
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Cluster Science Centre 2010
集群科学中心 2010
  • 批准号:
    ST/I000585/1
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grant
MAG and Data Assessment Studies for Cross-Scale: Follow-on Support
跨规模的 MAG 和数据评估研究:后续支持
  • 批准号:
    ST/H004246/1
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Cluster Science Centre
集群科学中心
  • 批准号:
    ST/H00422X/1
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grant
ExoMars Magnetometry Support for PDR Phase
ExoMars 磁力测量支持 PDR 相位
  • 批准号:
    ST/G003122/1
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Semiclassical and Quantum Methods for Chemical Reactions in Complex Systems
复杂系统中化学反应的半经典和量子方法
  • 批准号:
    0714118
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Quantum and Classical Approaches to Chemistry in Condensed Phases
凝聚相化学的量子和经典方法
  • 批准号:
    0139752
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Quantum Operator Approaches to Condensed Phase and Multidimensional Reaction Dynamics
凝聚相和多维反应动力学的量子算子方法
  • 批准号:
    9972864
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
I/UCRC: Multi-University Merger/North Carolina State University/Ohio State University/University of California, Davis
I/UCRC:多大学合并/北卡罗来纳州立大学/俄亥俄州立大学/加州大学戴维斯分校
  • 批准号:
    9900456
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
  • 批准号:
    2349868
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
  • 批准号:
    FT230100588
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    ARC Future Fellowships
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
  • 批准号:
    24K06756
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: 2024 Great Plains Operator Theory Symposium
会议:2024年大平原算子理论研讨会
  • 批准号:
    2400046
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Stable Polynomials, Rational Singularities, and Operator Theory
稳定多项式、有理奇点和算子理论
  • 批准号:
    2247702
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CQIS: Operator algebra and Quantum Information Theory
CQIS:算子代数和量子信息论
  • 批准号:
    2247114
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Categorical Symmetries of Operator Algebras
算子代数的分类对称性
  • 批准号:
    2247202
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
  • 批准号:
    2109949
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Quantum singularity and non-linear positive maps on operator algebras
算子代数上的量子奇点和非线性正映射
  • 批准号:
    23K03151
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: Virginia Operator Theory and Complex Analysis Meeting
会议:弗吉尼亚算子理论与复分析会议
  • 批准号:
    2327592
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了