Nonlinear Phenomena in Anisotropic Convection
各向异性对流中的非线性现象
基本信息
- 批准号:9320124
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-06-01 至 1997-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9320124 Bodenschatz Technical abstract: The investigation is concerned with the thermal convection of pressurized gases in an inclined layer. This system has been chosen since it is ideally suited for the study of multiparameter bifurcations in anisotropic pattern-forming systems. An experiment in convection of pressurized gases, opposed to, for example, electroconvection of liquid crystals (EC), has the major advantage that the fundamental equations describing the fluid flow are well understood. Pressurized gases allow experiments (similarly to EC) in large systems, where boundary effects are weak and much of the spatial degrees of freedom are retained. In addition, by changing the temperature and pressure a wide range in parameters can be achieved. The weakly nonlinear region will be investigated and quantitatively compared with recent theoretical investigations. Non-technical abstract: The aim of this research is th experimental investigation of nonlinear, non-equilibrium pattern- forming phenomena. As a paradigm buoyancy-driven convective flow in a fluid layer which is inclined with respect to the horizontal will be studied. This system is of great interest from a physics point of view as well as of major importance in heating and cooling technology. By using pressurized gases at ambient temperatures as working fluids convection cells with unprecedented large system sizes under well controlled boundary conditions can be realized. It is expected that boundary effects will be weak and much of the spatial degrees of freedom will be retained. The research will allow a detailed quantitative comparison with recent theoretical investigations. ***
技术摘要:研究倾斜地层中受压气体的热对流问题。之所以选择这个系统,是因为它非常适合研究各向异性模式形成系统中的多参数分岔。与液晶电对流(EC)等实验相反,用加压气体进行对流实验的主要优点是,我们很好地理解了描述流体流动的基本方程。加压气体允许在大型系统中进行实验(类似于EC),在这些系统中,边界效应很弱,并且保留了许多空间自由度。此外,通过改变温度和压力,可以实现广泛的参数范围。将对弱非线性区域进行研究,并与最近的理论研究进行定量比较。非技术文摘:本研究的目的是对非线性、非平衡模式形成现象进行实验研究。作为一个范例,浮力驱动的对流流动将在相对于水平倾斜的流体层中进行研究。从物理学的角度来看,这个系统非常有趣,在加热和冷却技术中也很重要。利用环境温度下的加压气体作为工质,可以在良好控制的边界条件下实现空前大系统尺寸的对流电池。预计边界效应将很弱,大部分空间自由度将被保留。这项研究将允许与最近的理论研究进行详细的定量比较。* * *
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eberhard Bodenschatz其他文献
Two-particle dispersion in weakly turbulent thermal convection
弱湍流热对流中的双粒子分散
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Simon Schutz;Eberhard Bodenschatz - 通讯作者:
Eberhard Bodenschatz
Active beating of a reconstituted dynein-microtubule complexes
重组动力蛋白-微管复合物的主动跳动
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Isabella Guido;Kenta Ishibashi;Eberhard Bodenschatz;Andrej Vilfan;Ramin Golestanian;Hitoshi Sakakibara;Kazuhiro Oiwa - 通讯作者:
Kazuhiro Oiwa
Scanning X-Ray Nanodiffraction on <em>Dictyostelium discoideum</em>
- DOI:
10.1016/j.bpj.2014.10.027 - 发表时间:
2014-12-02 - 期刊:
- 影响因子:
- 作者:
Marius Priebe;Marten Bernhardt;Christoph Blum;Marco Tarantola;Eberhard Bodenschatz;Tim Salditt - 通讯作者:
Tim Salditt
Light-powered reactivation of flagella: towards building an artificial cell
鞭毛的光动力重新激活:构建人造细胞
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
R. Ahmad;Christin Kleineberg;Yufeng Su;Samira Goli Pozveh;Albert J Bae;Eberhard Bodenschatz;Kai Sundmacher;Tanja Vidakovich;A. Gholami - 通讯作者:
A. Gholami
Astrophysical jets: insights into long-term hydrodynamics
天体物理喷流:对长期流体动力学的见解
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
D. Tordella;M. Belan;S. Massaglia;S. Ponte;A. Mignone;Eberhard Bodenschatz;A. Ferrari - 通讯作者:
A. Ferrari
Eberhard Bodenschatz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eberhard Bodenschatz', 18)}}的其他基金
Spatio-Temporal Chaos in Systems of Broken Symmetry
对称破缺系统中的时空混沌
- 批准号:
0305151 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing Grant
Development of Ultra-High Speed Detectors to Study the Physics of Turbulence
开发用于研究湍流物理的超高速探测器
- 批准号:
0216406 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
Particle Tracking in High Reynolds Number Turbulent Flows
高雷诺数湍流中的粒子追踪
- 批准号:
9988755 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Continuing Grant
Spatio-temporal Chaos in Systems of Broken Symmetry
对称破缺系统中的时空混沌
- 批准号:
0072077 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Continuing grant
Complex Spatio-Temporal Dynamics in Convection of Fluids
流体对流中的复杂时空动力学
- 批准号:
9705410 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Continuing grant
Particle Tracking in High Reynolds Number Turbulent Flows
高雷诺数湍流中的粒子追踪
- 批准号:
9722128 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Postdoc: Extensive Spatiotemporal Chaos in Extended Nonequillibrium Systems
博士后:扩展非平衡系统中的广泛时空混沌
- 批准号:
9503963 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
SHINE: The Evolution of Coronal Dimmings and Their Relationship to Eruptive Phenomena
闪耀:日冕变暗的演变及其与喷发现象的关系
- 批准号:
2400789 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Emergent quantum phenomena in epitaxial thin films of topological Dirac semimetal and its heterostructures
职业:拓扑狄拉克半金属及其异质结构外延薄膜中的量子现象
- 批准号:
2339309 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
- 批准号:
2339723 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Concentration Phenomena in Nonlinear PDEs and Elasto-plasticity Theory
非线性偏微分方程中的集中现象和弹塑性理论
- 批准号:
EP/Z000297/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Understanding quantum emergent phenomena in Shastry-Sutherland model systems
了解 Shastry-Sutherland 模型系统中的量子涌现现象
- 批准号:
2327555 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Persistent Optical Phenomena in Oxide Semiconductors
氧化物半导体中的持久光学现象
- 批准号:
2335744 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Transport Phenomena and the Uptake of Foreign Species during Crystal Growth
职业:晶体生长过程中的传输现象和外来物质的吸收
- 批准号:
2339644 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Understanding Photo-thermoelectric Phenomena in Bulk and Nanomaterials for Better Optical Sensing
职业:了解块状和纳米材料中的光热电现象以实现更好的光学传感
- 批准号:
2340728 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Single-atom quantum phenomena in nanoscale semiconductor devices
纳米级半导体器件中的单原子量子现象
- 批准号:
EP/V048333/2 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Time-resolved sImulations of ultrafast phenoMena in quantum matErialS (TIMES)
量子材料中超快现象的时间分辨模拟 (TIMES)
- 批准号:
EP/Y032659/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant