Development of Ultra-High Speed Detectors to Study the Physics of Turbulence
开发用于研究湍流物理的超高速探测器
基本信息
- 批准号:0216406
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-08-01 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Particle tracking in turbulent flows requires very high temporal (approx. 100,000Hz) and spatial resolution imaging detection systems (512 x 512 pixels). Such a system generates data at very high rates, which need to be transferred, stored, and analyzed. In addition three-dimensional tracking of many particles requires the simultaneous stereoscopic imaging by four cameras. Traditional detector technology cannot handle the resulting onslaught of data ( 26 gigabytes of data per second per camera) that would need to be streamed into memory and stored for further processing. Here, we will develop the next generation, ultra-high speed, high-resolution particle tracking instrumentation for following the motion of approximately 300 minute tracer particles in three dimensions with a temporal resolution of 100,000Hz. This new system will be two orders of magnitude faster than any existing conventional imaging system of comparable spatial resolution. The instrument will be based on stereoscopic imaging with four ultra-high-speed, high-resolution pixel array detectors (PAD) that will be developed at Cornell. Each PAD has 1024x512 "intelligent" pixels. The development of the uniquely designed PAD detectors, the data acquisition system, and the data analysis software will result in a technological breakthrough for the Lagrangian analysis of high Reynolds number turbulent flows. Fully developed turbulence is ubiquitous. Virtually all engineering and naturally occurring flows (e.g., atmospheric, oceanographic, and astrophysical flows ) involve high Reynolds number turbulence. The transport and mixing properties of turbulence ultimately impact our daily lives. In systems from the mixing and chemical reactions in a turbulent burner or internal combustion engine to the transport of pollutants (or bioagents) in the atmosphere, or even the "simple" mixing of milk into a coffee cup, the understanding of turbulence is essential. It is clear that many aspects of turbulence are best studied by following the motion of fluid particles. The difficulty of tracking particles in high Reynolds number turbulence has thus far made it impossible to test many long-standing predictions. This project represents a major step to confront this issue. The detection and analysis system to be developed will simultaneously follow 300 particles at a rate of 100,000 pictures per second. (A standard TV camera takes 30 pictures per second.) This high speed will be achieved by using pixel array technology in which each pixel has local intelligence. Data of this kind will enable theoretical advances in a number of important applications such as scalar mixing and cloud formation. Moreover, the technology, once developed, is likely to impact broader fields than can not be envisioned at this time. For example, tracking of particles is at the heart of a number of environmental problems (e.g., contaminant or bioagent dispersion). A successful PAD fabrication will likely result in more sensor chips than needed for this study. Many of these chips would be made available to the larger community.
湍流中的颗粒跟踪需要非常高的时间(约100秒)。100,000Hz)和空间分辨率成像检测系统(512 x 512像素)。这样的系统以非常高的速率生成数据,这些数据需要被传输、存储和分析。此外,许多颗粒的三维跟踪需要四个摄像机同时进行立体成像。 传统的探测器技术无法处理由此产生的数据冲击(每个摄像头每秒26千兆字节的数据),这些数据需要流入内存并存储以供进一步处理。 在这里,我们将开发下一代超高速,高分辨率的粒子跟踪仪器,用于跟踪大约300分钟的示踪粒子在三维空间中的运动,时间分辨率为100,000 Hz。这个新系统将比任何现有的具有可比空间分辨率的传统成像系统快两个数量级。该仪器将基于立体成像与四个超高速,高分辨率像素阵列探测器(PAD),将在康奈尔大学开发。 每个PAD具有1024x512“智能”像素。独特设计的PAD探测器、数据采集系统和数据分析软件的开发将导致高雷诺数湍流的拉格朗日分析的技术突破。 充分发展的湍流是普遍存在的。 几乎所有的工程和自然发生的流动(例如,大气、海洋和天体物理流动)涉及高雷诺数湍流。湍流的传输和混合特性最终会影响我们的日常生活。从湍流燃烧器或内燃机中的混合和化学反应到大气中污染物(或生物制剂)的传输,甚至是将牛奶“简单”混合到咖啡杯中,对湍流的理解至关重要。很明显,湍流的许多方面最好通过跟踪流体粒子的运动来研究。在高雷诺数湍流中跟踪颗粒的困难使得到目前为止无法测试许多长期存在的预测。该项目是解决这一问题的一个重要步骤。即将开发的探测和分析系统将以每秒10万张图片的速度同时跟踪300个粒子。(标准电视摄像机每秒可拍摄30张照片。这种高速度将通过使用像素阵列技术来实现,其中每个像素都具有本地智能。 这类数据将使标量混合和云的形成等一些重要应用的理论进展。 此外,这项技术一旦开发出来,可能会影响到比目前无法想象的更广泛的领域。 例如,颗粒的跟踪是许多环境问题的核心(例如,污染物或生物制剂分散体)。一个成功的PAD制造可能会导致更多的传感器芯片比本研究所需的。其中许多芯片将提供给更大的社区。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eberhard Bodenschatz其他文献
Two-particle dispersion in weakly turbulent thermal convection
弱湍流热对流中的双粒子分散
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Simon Schutz;Eberhard Bodenschatz - 通讯作者:
Eberhard Bodenschatz
Active beating of a reconstituted dynein-microtubule complexes
重组动力蛋白-微管复合物的主动跳动
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Isabella Guido;Kenta Ishibashi;Eberhard Bodenschatz;Andrej Vilfan;Ramin Golestanian;Hitoshi Sakakibara;Kazuhiro Oiwa - 通讯作者:
Kazuhiro Oiwa
Scanning X-Ray Nanodiffraction on <em>Dictyostelium discoideum</em>
- DOI:
10.1016/j.bpj.2014.10.027 - 发表时间:
2014-12-02 - 期刊:
- 影响因子:
- 作者:
Marius Priebe;Marten Bernhardt;Christoph Blum;Marco Tarantola;Eberhard Bodenschatz;Tim Salditt - 通讯作者:
Tim Salditt
Light-powered reactivation of flagella: towards building an artificial cell
鞭毛的光动力重新激活:构建人造细胞
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
R. Ahmad;Christin Kleineberg;Yufeng Su;Samira Goli Pozveh;Albert J Bae;Eberhard Bodenschatz;Kai Sundmacher;Tanja Vidakovich;A. Gholami - 通讯作者:
A. Gholami
Astrophysical jets: insights into long-term hydrodynamics
天体物理喷流:对长期流体动力学的见解
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
D. Tordella;M. Belan;S. Massaglia;S. Ponte;A. Mignone;Eberhard Bodenschatz;A. Ferrari - 通讯作者:
A. Ferrari
Eberhard Bodenschatz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eberhard Bodenschatz', 18)}}的其他基金
Spatio-Temporal Chaos in Systems of Broken Symmetry
对称破缺系统中的时空混沌
- 批准号:
0305151 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing Grant
Particle Tracking in High Reynolds Number Turbulent Flows
高雷诺数湍流中的粒子追踪
- 批准号:
9988755 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Continuing Grant
Spatio-temporal Chaos in Systems of Broken Symmetry
对称破缺系统中的时空混沌
- 批准号:
0072077 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Continuing grant
Complex Spatio-Temporal Dynamics in Convection of Fluids
流体对流中的复杂时空动力学
- 批准号:
9705410 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Continuing grant
Particle Tracking in High Reynolds Number Turbulent Flows
高雷诺数湍流中的粒子追踪
- 批准号:
9722128 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Postdoc: Extensive Spatiotemporal Chaos in Extended Nonequillibrium Systems
博士后:扩展非平衡系统中的广泛时空混沌
- 批准号:
9503963 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
Nonlinear Phenomena in Anisotropic Convection
各向异性对流中的非线性现象
- 批准号:
9320124 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Continuing grant
相似国自然基金
磷脂酶Ultra特异性催化油脂体系中微量磷脂分子的调控机制研究
- 批准号:31471690
- 批准年份:2014
- 资助金额:90.0 万元
- 项目类别:面上项目
适应纳米尺度CMOS集成电路DFM的ULTRA模型完善和偏差模拟技术研究
- 批准号:60976066
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
相似海外基金
Development of Ultra-short Pulsed Laser Micro-precision Processing Technology by High-speed Stress Control
高速应力控制超短脉冲激光微精密加工技术发展
- 批准号:
22KJ0935 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of Aluminium Sheet Compliant Clamping and Sealing Technologies to Unlock Ultra-High-Speed Blow Forming
开发铝板合规夹紧和密封技术以解锁超高速吹塑成型
- 批准号:
555873-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alliance Grants
Development of ultra-high-speed image-based technology for the study of lightning and lightning interactions
开发用于研究闪电和闪电相互作用的超高速图像技术
- 批准号:
2751179 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Development of ultra-high-speed nanofiltration membranes by plasma cross-linking of liquid PDMS
液体PDMS等离子体交联开发超高速纳滤膜
- 批准号:
22H02149 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Aluminium Sheet Compliant Clamping and Sealing Technologies to Unlock Ultra-High-Speed Blow Forming
开发铝板合规夹紧和密封技术以解锁超高速吹塑成型
- 批准号:
555873-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Alliance Grants
Development of a high-speed and ultra-low-power die-hard logic LSI fundamental technology for IoT applications
开发适用于物联网应用的高速、超低功耗顽固逻辑LSI基础技术
- 批准号:
21H04868 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Development of an Ultra-Fast Statistical Signal/Power Integrity Analysis Simulator for the High-speed Digital System Design
开发用于高速数字系统设计的超快速统计信号/电源完整性分析模拟器
- 批准号:
20K14719 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of Aluminium Sheet Compliant Clamping and Sealing Technologies to Unlock Ultra-High-Speed Blow Forming
开发铝板合规夹紧和密封技术以解锁超高速吹塑成型
- 批准号:
555873-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Alliance Grants
Development of ultra-high-temperature ceramic composite coatings with excellent oxidation resistance via high-speed chemical vapor deposition techniques
利用高速化学气相沉积技术开发具有优异抗氧化性能的超高温陶瓷复合涂层
- 批准号:
19H02484 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of principle of underwater-plasma ultra-high-speed charge transfer mechanism by hypothesis of pioneer hydrated electron channel formation
通过水合电子通道形成假设发展水下等离子体超高速电荷转移机制原理
- 批准号:
19H00743 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)